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Chilled Water System Automation 

Rockwell Automation
A Case Study

1. Introduction

This document presents a case study based on the development of a control application using 

agent technology developed in Rockwell Automation, the Autonomous Cooperative System 

(ACS) agent platform [1]. The application presented involves intelligent distributed control of 

shipboard Chilled Water System (CWS) for vessels of the US-Navy [4].

The document is structured as follows. Section 2 provides a description of the CWS appli-

cation with focus on requirements and utilization of agent technology. Section 3 gives an 

overview of ACS agent platform that has been designed and implemented in parallel with the 

development of CWS application. The last section describes lessons that we have learned dur-

ing this development process.

2.  Application Description

The Chilled Water System (CWS) pilot system is based on the Reduced Scale Advanced Dem-

onstrator (RSAD) model, a reconfigurable fluid system test platform. The RSAD has an in-

tegrated control architecture that includes Rockwell Automation technology for control and 

visualization. The RSAD model is currently configured as a chilled water system.

The physical layout of the RSAD chilled water system is a scaled-down version from a real ship. 

There is one chiller per zone, i.e., currently two plants. There are 16 heat sources on board of 

the ship (for example, combat systems, communication systems, and radar and sonar equip-

ment) that must be kept cool enough, i.e., below the equipment’s shutdown temperature, 

in order to operate. Each water cooling plant is represented by an agent, as well as each heat 
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source, each valve, and some parts of the piping system. Within the RSAD, immersion heaters 

provide the energy to increase the temperature of the heat sources. A temperature sensor at 

each source provides temperature input to the control system. The main circulation piping is 

looped to provide alternative paths from any chilled water plant to any heat source.

2.1 System Requirements

To design a highly distributed shipboard automation system, the following four fundamental 

requirements are considered:

• Reduced manning: This is intended to create a system with less human intervention 

and more intelligent components capable of making decisions on behalf of the equip-

ment.

• Flexible distributed control: This is understood as the capability of the system to adapt 

its components operations to respond to dynamically changing conditions without 

using predefined recipes. To achieve flexible distributed control, extensions to the 

control and network software is required to enable creation of component-level intel-

ligence that increases robustness of the automation system.

• Commercial-off-the-shelf (COTS): This aspect addresses the cost reduction and sys-

tem life cycle requirements of new shipboard systems. Under the COTS scope, a ship 

can be maintained at any friendly location in the world.

• Reliable and survivable operation: As the system becomes more autonomous and self-

determined, it is required to augment the level of diagnosability of the components 

in a distributed manner. The system must be decentralized to avoid a single point of 

failure. Decision-making process should be placed as close as possible to the compo-

nent level so that a disconnected system should be able to provide local decisions in 

the case of failure.
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2.2 Agent Technology Deployment

For this type of application, classical or distributed control methodology is applied using pro-

grammable logical controllers (PLCs). Nevertheless, in this case there were requirements for 

survivability and flexibility and these are more or less features of multi-agent systems. Al-

though, it is possible to use backup of PLCs, the control application has to be designed so that 

all possible combination of failures that might occur are avoided. The control application can 

be physically distributed over several controllers, but presence of any centralized point in this 

structure becomes a single point of failure that has to be avoided.

Agents are distributed according to the physical location of the hardware equipment. The 

hardware partitioning follows the wiring configuration of the input/output (I/O) signals in 

such a way that the components are independent of one another. Single-point-of-failure nodes, 

from the hardware distribution perspective, are avoided. Other rules need to be satisfied to be 

free from single-point-of-failure nodes (for example, use no remote I/O, deploy the smallest 

possible number of agents per component and controller, and use no mapped inter-control-

ler data). With these rules in mind, the 68 agents for this application are deployed within 23 

industrial controllers.

3 Autonomous Cooperative System Description

There was a requirement to use COTS PLCs. Since none of the existing multi agent system 

platforms were applicable for PLCs at that time, design and implementation of a custom multi 

agent system platform was needed – this became the Autonomous Cooperative System (ACS) 

[1]. Standard Rockwell Automation ControlLogix and Flexlogix controllers were augmented 

with multi-agent system capabilities. Each controller is able to host a collection of various 

agents, where agents of the same type are downloaded only once and instances differ only by 

their name and configuration.

3.1 Main Features of Agent Platform

There are two implementations of ACS available: C++ and Java. The first one is able to run in 
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programmable logical controllers and also in their software emulations running on PCs. The 

java version is able to run in any Java SE 1.5.

A structure of middle-agents (DF and AMS agents in this case) called dynamic hierarchical 

teams (DHT) were designed and implemented [3]. This structure has a user-defined level 

of fault tolerance and is moreover fixed scalable, i.e., the structure can be extended by fixed 

known cost. This is very important aspect for the fault tolerance of the whole system since 

these middle-agents are used to find suitable cooperation partners among agents.

There are two levels of agent programming and execution within one agent: high-level and 

low-level.

• High-level – written in a high-level programming language (such as C++ or Java). This 

is the core of the agent, the part that is able to communicate with other agents, form 

plans, undertake reasoning, etc.

• Low-level – written in relay ladder logic, a standard control language. This part is 

responsible for real-time control to guarantee response times and safety of the control 

system.  This part is also responsible for generating events to the high-level part of the 

agent as notifications of some state or condition requiring the agent’s attention.

The presence of these two levels is essential for fault tolerance. The low-level ensures safe func-

tionality of a control system even when the high-level part is not working properly or when 

there is a need for fast reaction to some critical situation, perhaps before the high-level part is 

able to make a more accurate decision.

So far, a declarative style of programming agent behavior has been used and successful imple-

mentation of several agent-based control systems undertaken. Nevertheless, this approach has 

been reevaluated and it became clear that the declarative style has low flexibility since any 

additional feature has to be included into all parts of the system. Thus, a procedural style of 

programming has been designed and a procedural engine has been created. This engine enables 
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use of the full power of a programming language (Java or C++ in this case) together with a 

set of functions and attributes to interact with other agents, trigger planning processes, and so 

on.

3.2 Agent Development Environment

The Development Environment (DE) is a software tool that assists the user in programming 

and deployment of the distributed application [2], e.g., creation and deployment of agents, 

I/O connections, and automatic code generation. The development environment introduces 

the following dimensions into the development phase:

• allows the user to specify the physical and behavioral aspects of the application in a 

manner completely independent of the control system;

• enables the user to specify a multi-processor control system in a manner completely 

independent of the application that is to run on it;

• assists the user in combining an application with a control system;

• generates the control code and behavior descriptions for each agent in the system;

• combines the code for all agents assigned to each processor in the system;

• augments each controller automatically to handle the communications to other con-

trollers as a result of the program distribution; and

• communicates with all the controllers involved in an application, for their program-

ming and configuration, and for subsequent monitoring and editing.

DE is based on a library of components called the template library (TL). The library is editable 

by the user, and each template can contain both low-level control behavior (written in ladder 

diagram) and higher-level intelligent behavior. The model for the control behavior supports an 

“object” view of the components in that, for example, inheritance is supported. The TL author 

can express, for example, that “A Radar is a type of CombatSystem”. Each instance of Radar 

inherits all ladder data definitions and the logic from CombatSystem template. Each library is 

targeted to a specific application domain, e.g., material handling systems or shipboard chilled 

water systems, and so can be used to create control systems for multiple similar facilities (F) in 

the same domain. In this way, the effort to build the library is amortized over all the facilities 
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built with the library, and each facility reaps the benefits of having control system software that 

is structured, well defined, predictable, and tested.

The user creates a facility from components of the template library and customizes their pa-

rameters. Next, the user establishes a Control System (CS) that describes all the controllers, 

I/O cards, and networks, plus their interconnections. After the TL, F, and CS parts are com-

pleted, the user generates and compiles the code. We currently support relay ladder logic (IEC 

1131-3) for low-level agent part and C++ code for high-level agent part, plus we are prepared 

to support also Java code. After the agent assignment, the user downloads the software into 

the controllers.

Since TL, F, and CS editors are independent, it is possible to change only the necessary parts 

when the system needs to incorporate changes. For example, a new controller can be added by 

the CS editor and subsequently have some agents assigned to it. The system is regenerated in a 

manner consistent with all modifications.

4 Discussion

There were several key lessons from this project.  The first is that for actual deployment of such 

an agent system it is very important to simulate its behavior prior to running it in a real envi-

ronment.  Both a software simulation environment (using Matlab) and a small-scale hardware 

simulation environment were created for testing purposes.  Simulation is especially important 

for a multi-agent system since an emergent behavior may appear in this case and its identifica-

tion and study without simulation can be very hard. 

The second lesson concerns the issue of standards. During the development of the multi agent 

system platform close attention was paid the FIPA agent system standards.  The FIPA stan-

dards were given low priority in the beginning since they bring with them a huge overhead of 

resources.  Subsequently, as development proceeded, the system has been made increasingly 

FIPA-compliant. Standardization is very important when two or more systems (multi agent 
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system platforms in this case) need to be interconnected and this was the case for other ap-

plications.

Nevertheless, this standards-compliance effort is not for free. The first issue is the overhead that 

it brings. For example, the FIPA Agent Communication Language (ACL) has to be adopted on 

top of messages. These are then embedded as a content of this ACL message structure. Agents 

have to be able to use the FIPA ACL Semantic Language (SL) for mutual understanding of 

communication, which represents a further overhead. The overhead is not only in computa-

tion time and memory consumption, but also in the effort of the people developing the sys-

tem. Moreover, SL is very impractical since its notation is not suitable for extensive parsing and 

working with the message in a form of the collections of objects. In summary, all these factors 

have to be carefully evaluated before adopting the FIPA ACL standards. One of the possible 

compromises is to use standards for external communication only and avoid them for internal 

purposes.

A third lesson was that, as the system becomes more complex, there is a need for a visualization 

and debugging tool to observe the internal communication among the agents and behavior of 

the system and to discover potential problems. This need led to the development of a tool that 

receives messages from all agents in the system, reasons about the information, and presents 

it from different points of view and from different levels of perspective. All these parts of the 

visualization screen are interconnected. For example, it is possible to identify some problem 

in the workflow window, select the appropriate part of the conversation among the agents and 

receive the list of messages involved in the conversation. Through the tool, the user can also 

configure running agents by sending service messages to them.

On the issue of simulation, the Manufacturing Agent Simulation Tool (MAST) [5] was devel-

oped separately from ACS system. MAST represents a new generation of simulation systems 

with embedded multi-agent systems principles aimed at the manufacturing domain. It runs on 

top of JADE system and it has been intended as an agent-based demonstration application that 

would illustrate, for some typical manufacturing task, the major benefits of the deployment of 

agent technology. To show the robustness and flexibility of the agent solution, attention was 
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paid to failure detection and recovery. A failure of any component can be emulated (e.g., a 

failure of the conveyor belt) causing the agents to start negotiations on alternative transporta-

tion paths while avoiding the broken component. An easy-to-understand visualization helps 

the user to observe the overall behavior of the system during the simulation.

Since the project began, an enormous amount of time was spent on the design of the generic 

planning engine. This planning engine was originally based on a declarative programming lan-

guage, which imposed many limitations. Any addition to this language resulted in changes re-

quired for all related tools. Thus a lesson learnt was that moving to a procedural language gave 

the benefit of overcoming these limitations and stabilizing development of the related tools.

During the deployment of the multi-agent system, a key lesson was that a fault tolerant multi-

agent system must satisfy the following characteristics:

• Reliable communication. The system has to guarantee that no messages are lost or 

duplicated. Every message must be delivered, or else the sender must be notified if a 

message cannot be delivered.

• Fault tolerant agent platform. Since the agent platform is an environment where 

agents live, the possible failure of some agent should affect neither this environment 

nor other agents in this system.

• Fault tolerant knowledge. Knowledge about other agents is a fundamental part of a 

multi-agent system. Thus this knowledge has to be present at configuration time or 

dynamically obtained in a fault tolerant manner. For example, having only one direc-

tory facilitator that manages this knowledge creates a single point of failure in the 

system.

• Physical distribution. It should be possible to physically distribute the agents of a 

multi-agent system and allow communication among them. This distribution increas-

es fault tolerance in the case of a hardware failures, power failures, etc.
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Since agent technology is more powerful than classical control, it is important not to limit its 

power by blindly fulfilling the initial requirements of customers, especially procedures that 

they are using with classical control. For example, there are standard procedures for perform-

ing specific tasks that a person has to follow, usually in a form of recipe. Nevertheless, it could 

be possible to use more advanced techniques in a multi-agent system that guarantee the same 

result with increased performance.

What would be the main guidance while considering implementation of an agent system? In 

the beginning, ensure that agent technology provides some advantage over classical control in 

considered implementation. The benefit can be not only of improved functionality, fault toler-

ance, and scalability. The benefit can also be the ability to reuse an already-developed agent 

solution to solve a similar problem. The first implementation is likely to be harder than before, 

but subsequent implementations may just be a matter of different parameter configuration.
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