Model Based Testing for Agent Systems -
Zhiyong Zhang, John Thangarajah, Lin Padgham
RMIT University, Melbourne, Australia

Model Based Testing — Units under test

Model - The Prometheus Detailed Design 1
Specification, typical of most BDI agent — Agent —
* event (percept/action/message): Sy Flan
1s tested w.r.t coverage or —Ip|an ;}imet —
overlap Beliefset
» plan: 1s tested w.r.t event
handling, context condition, 7 v V..
event posting, completion of 1 —] S |
plan execution and plan cycle | Porcopt Action Message |

* Belief-set: 1s tested w.r.t event
pos tillg Generalized as event

Hierarchy of Prometheus agent model

RMIT University®

Testing Process

* Determine the testing order of units e0) m
(paper at ENASEQ7) el

o there may be dependencies e3
o plan cycles

——

———_

<- Generate test cases

-'_'_'_‘_'_,_,_:-F'.-'.-"
— R

* Augment Ehe source code to facilitate testing

P

" ___\-_"""—\-.._

(:- Execute test casestand generate report.

—— —
— ——
—

. F’rov_iaga;janalysis of testing report.

All the above are fully automated and can be applied to partial system.

FWIT University@

Test Case Generation

« Extract variables specified in design

e.g. [event-var, book.bookName, string, I=null],
[agent-var, stock, int, =z 0, < 200]

* Generate values for each variable

- (Equivalence class partitioning, Boundary value analysis)
- Allow for different levels for choice of values for variables

name |index| domain [valid|minimal| normal | compre-
hensive
stock |EC-1| (-00.0) | no | N/A -1 -1

EC-2| [0,200] | yes | 0,200 0.1. 10,1, 100,

199, 200 | 199, 200
EC-3|(200,4+0c)| no | N/A 201 201

- use combinatorial Testing Service to reduce number of combinations,
provide choice of thoroughness

* Allow user to manually enter test cases

Manual Testing Case Input

h‘ stock Manager: Outlofstock response. Def. m
» The user can e SEOER MEREREN - FER OF SREER ISSEEIS FE l

specify .ﬂ.ifl::t: Stm:ktm:tmager; Unit: Out of stock response
o a new test case
add|t|ona_l test BookiD(int: [
Cases_ using NumberOrdered(int): |5;1'
domain and _
des ig N Urgent{yesno): yves —
knowledge. Save Add
User-defined test l:anu
BooklD | NumberOrdered Urgent
13 2% WES
2 2 67 no
Remove Close
Auto-generated test cases (38 items, read-onhy):
| BooklD] MumberOrdered Iwh Urgent .
26 |0 1 nio]
27 |0 999 WEs =
28 -1 999 Yes |
0 |4 ana heac I

RMIT Lni

Test Case Execution - setup

+ Initialization procedures — e.g. setting up connections servers, populating
databases. Specified in the Unit Test Descriptor of each unit

order j[owner object |is static|function call comment
1 Stock Agent yes initBookDB() method to populate the books database
2 BuyPlan no initConnAmazon([sets up connection to Amazon.com

+ Variable assignment - dependent on how variables are implemented, requires the
specification of an assignment relation.

+ Interaction with external entities —

— External to the system (user controlled)
— Other agents within the system (use mock agents to simulate)

REMIT University@

Variable types

« Simple (public variable)
« Complex (part of a nested structure)
+ Belief (part of a belief-set)

* Function (variables realised by a function, e.g. avg. price)

System Design Document / System Implementation \ Value combinations:
Code of the trigger event: Index | SD.booklD | SO.booklD | SD.inStock | SO.required
Plan: Query Book by Name: public event TriggerQuery extends Event 1 1 1 5 30
¢t 1 ...
Definition of Input Variables: | public Attendee attd; 12 | 0 0 | 0 | 31
event-var, Email, string, != null;_ ™° mplmm “ StockD8: Assigned by the
event-var, Name, siring, 1= ""“ R e n pul:-lu: class Attendee { booklD | inStock time following records
' LT _ public String email; 1 5 random |
[S . private String name; .
Unit Tﬂfﬁexcrlptur -'“"‘“x “F{a1 public String getName() { StockOrders:
l/,X:/tlue assigmment for in :un'lri:hhlﬁ “: return name; } bookD | required suppller
an I N i public void setl"-lamegstnng val) { 1 | 30 random |4
; variable | type assignment ' name = valua:
a Email complex | attd.email | 1 . .)
Name | complex | attd.setName(String) || | [Mlustration of belief variables
2. Operations for initialisation / Code of the plan to be tested:
S public plan QueryBookbyName extends Plan
T ,f*
- "

{
— #handles event TriggerQuery inEv;
context () {
attd.gethame() 1= null
&& attd email = null ; }
}

. -~
- Illustration of complex variables

REMIT Lnksersity@

Mock Agents

* Functionality of a Mock Agent

— Simulates the message send-reply logic of the interactee agent that it
replaces.

— Any message from the plan-under-test to an interactee agent will be
received by the replacement mock agent.

+ Implementing a Mock Agent

— The mock agents are automatically created when the testing framework
builds the testing code for a plan:

—All outgoing messaged are extracted from the plan under test.

—For each message, the interactee agent type that receives the
message is identified.

—For each of the identified interactee agent type, the testing framework
generates the code of a mock agent type that replaces this interactee
agent type.

FEMIT University@

Summary

* Provide a model based unit testing framework that is automated.

* Implemented within PDT (The Prometheus Design Tool
www.cs.rmit.edu.au/agents/pdt)

« Based on previous work - Zhiyong Zhang, John Thangarajah and Lin
Padgham, Automated Unit Testing For Agent Systems. 2nd
International Working Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE-07).

* Full paper at AOSE 2009 : Zhiyong Zhang, John Thangarajah and Lin
Padgham, Model based Testing for Agent Systems (AOSE-09).

Future Work

« Testing Agent Interactions .

+ Testing requirements.

RMIT University@

