Practical Applications of Distributed IoT Systems

Iván García-Magariño

Department of Software Engineering and Artificial Intelligence Complutense University of Madrid, Spain

igarciam@ucm.es

Outline

- Introduction
- Distributed systems for measuring IoT devices for measuring memory in Activity of Daily Life
- Two Case Studies:
 - Assessment of Navigation patterns for measuring memory and disorientation in 3D simulations
 - Real and novel smart cupboard in kitchen for measuring Memory
- Application of Human-centric Artificial Intelligence

Introduction

Problem:

- Alzheimer is one of the most prevalent disorders
- The main symptom is loss of memory
- Measuring memory requires effort from the subjects
- Continuous Tracking memory usually requires a high level of commitment

Proposed solution:

 Internet of Things (IoT) devices for tracking memory of people by just analyzing their daily activities

IoT for Measuring Activities in Daily Life

Actions that they reflect they forget something:

- where they left some keys, their shoes, clothes or food
- whether they have changed their clothes
- whether they have had a shower

Most of these actions can be tracked by IoT devices in houses

- Presence Sensors
- Smart cupboards
- Smart wardrobes
- Smart taps

Algorithms for assessing memory and detecting disorientation

Reference:

García-Magariño, I., Cárdenas, M., Gómez-Sanz, J., & Pérez Díez (2019). Framework-supported mechanism of testing algorithms for assessing memory and detecting disorientation from IoT sensors . In 5th IEEE World Forum on Internet of Things (WF-IoT) 2019. Limerick, Ireland, April 15-18 2019. IEEE

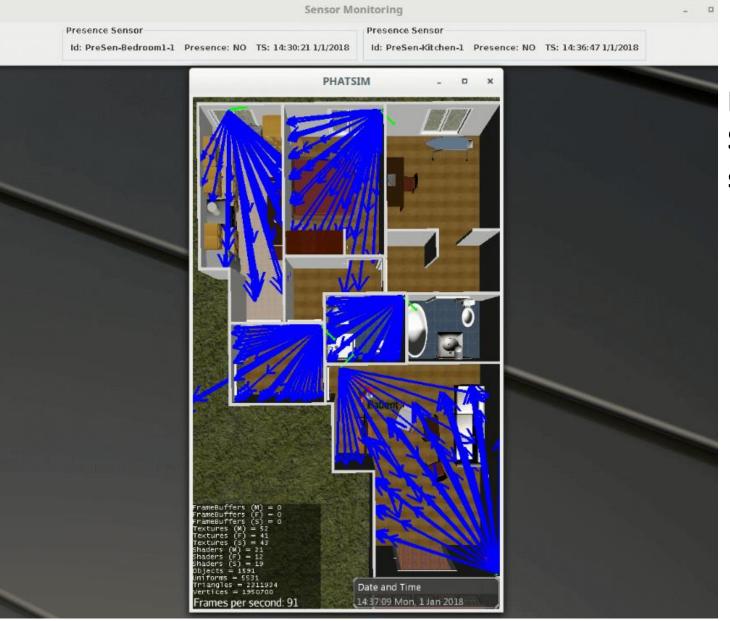
Main aspects:

- Use of Presence sensors
- Detecting Navigation Patterns

Navigation patterns simulated in AIDE 3D simulation platform

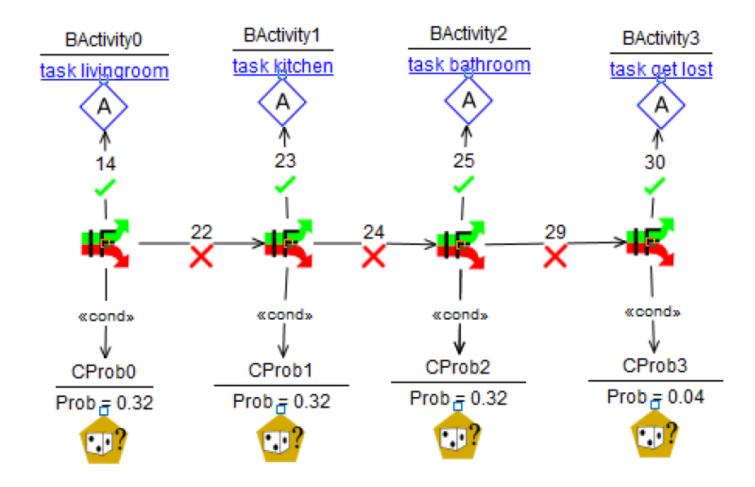
AIDE (developed by Grasia research group)

Algorithm 1 Algorithm for measuring memory with presence sensors with pattern P_1


- 1: procedure InitializeMemoryTrackingSystem()
- 2: $sum \leftarrow 0$
- 3: queue \leftarrow new CircularQueue()
- 4: procedure HANDLESENSORINFORMATION $(s_i, \Delta t_i, \Delta t_{s,i})$
- 5: queue.add (Δt_i)
- 6: $\operatorname{sum} \leftarrow \operatorname{sum} + \Delta t_i$
- 7: if queue.length $> n_{p,1}$ then
- 8: $oldT \leftarrow queue.begin$
- 9: queue.removeBegin()
- 10: $sum \leftarrow sum oldT$
- 11: **if** $(sum < t_{p,1})$ **then**
- 12: notifyMemoryPattern (p_1)

Algorithm 2 Algorithm for measuring memory with presence sensors with pattern P_1

- 1: procedure InitializeMemoryTrackingSystem()
- 2: returningTimes gets new List[|S|]
- 3: for $i \in [0, |S|-1]$ do
- 4: returningTimes[i] \leftarrow new List();
- 5: procedure HANDLESENSORINFORMATION $(s_i, \Delta t_i, \Delta t_{s,i})$
- 6: returningTimes[s_i].add ($\Delta t_{s,i}$)
- 7: **if** (returningTimes $[s_i]$.length $> n_{p,2}$) and
- 8: (returningTimes[s_i].median $< t_{p,2}$) then
- 9: notifyMemoryPattern (p_2)



Example of the avatar opening the fridge

Presence Sensors in simulations

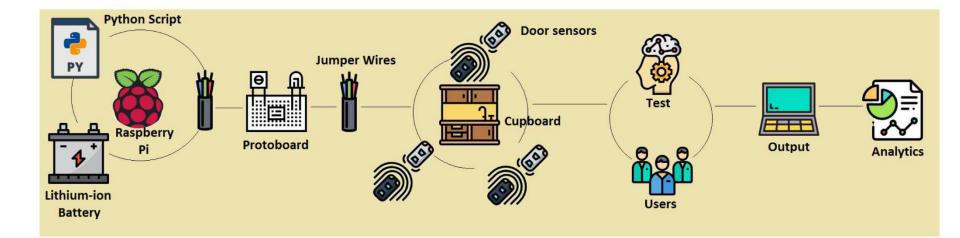
Modelling avatar behaviors

Example of information transmitted to ports in simulations

sims ensorevent;0;TYPE_ACCELEROMETER;30;-7.269268;6.442955;-1.2984961
ensorevency 0/11Ph_ACCELEROMATER/30/-7.203200/0.442353/-1.2304301
simsensorevent;0
;TYPE ACCELEROMETER;29;-7.802751;5.912181;-0.4507785
simsensorevent;0;TYPE ACCELE
ROMETER; 29; -7.9960017; 5.662624; -0.19668841
simsensorevent;0;TYPE ACCELEROMETER;30
;-7.7037888;5.9877224;-0.9158656
simsensorevent;0;TYPE_ACCELEROMETER;29;-7.365481
4;6.25211;-1.6434166
simsensorevent;0;TYPE_ACCELEROMETER;29;-6.9947886;6.4315786;
-2.397442
simsensorevent;0;TYPE_ACCELEROMETER;29;-7.32052;6.1887913;-2.036875
sims
ensorevent;0;TYPE_ACCELEROMETER;29;-7.9070582;5.667595;-1.1818664
simsensorevent;
0;TYPE_ACCELEROMETER;30;-8.398877;5.0363092;-0.36670408
simsensorevent;0;TYPE_ACC
ELEROMETER; 29; -8.781941; 4.333909; 0.36712438
simsensorevent;0;TYPE_ACCELEROMETER;2
9;-8.588058;4.710294;-0.31367403
simsensorevent;0;TYPE_ACCELEROMETER;29;-8.348017; ;5.032569;-1.0118593
, J. 0JZJ09, -1. 0110395

Example of analysing each simulation

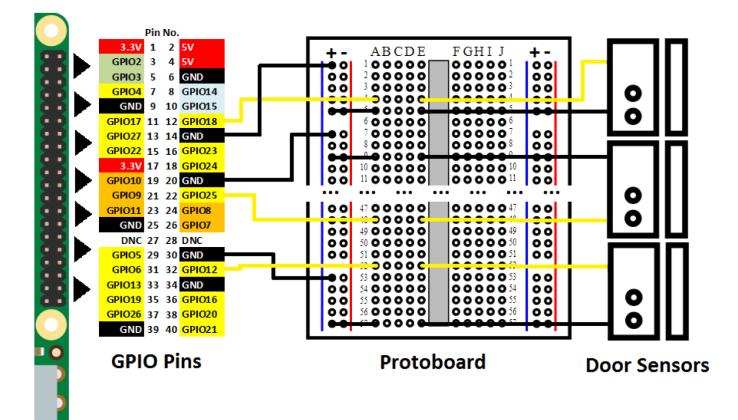
timestamp	$\mathbf{s_1}$	$\mathbf{s_2}$	$\mathbf{s_3}$	s_4	$\mathbf{s_5}$	s_6	known behaviour	predicted Algorithm 1	predicted Algorithm 2
1514819514501	0	0	0	1	0	0	GoToKitchen10	Normal	Disoriented
1514822418501	0	0	0	1	0	0	GoGetLost15	Normal	Disoriented
1514822434501	0	1	0	0	0	0	GoGetLost15	Normal	Normal
							••••	·	
1514822447501	0	0	0	0	0	1	GoGetLost15	Normal	Normal
1514822478501	0	0	0	1	0	0	GoGetLost15	Normal	Disoriented
1514822493501	0	1	0	0	0	0	GoGetLost15	Disoriented	Normal
	· · · · · · · · · · · · · · · · · · ·								
1514822507501	0	0	0	0	0	1	GoGetLost15	Disoriented	Normal
1514822538501	0	0	0	1	0	0	GoGetLost15	Disoriented	Disoriented
· · · · · · · · · · · · · · · · · · ·									

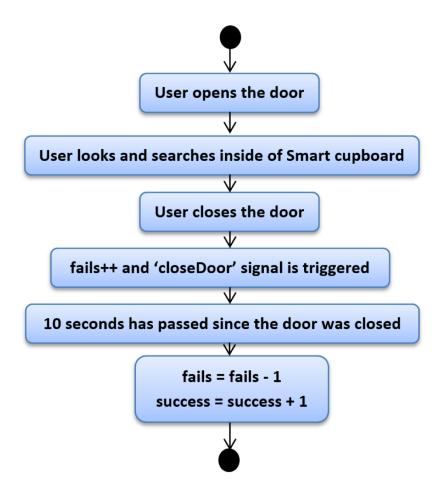

Results of the analysis of simulated navigation patterns

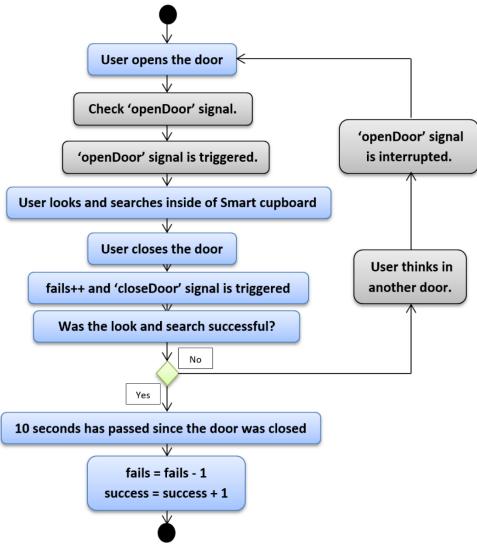
	Algorithm 1	Algorithm 2
Accuracy	90.72%	87.63%
Precision	83.33%	60.00%

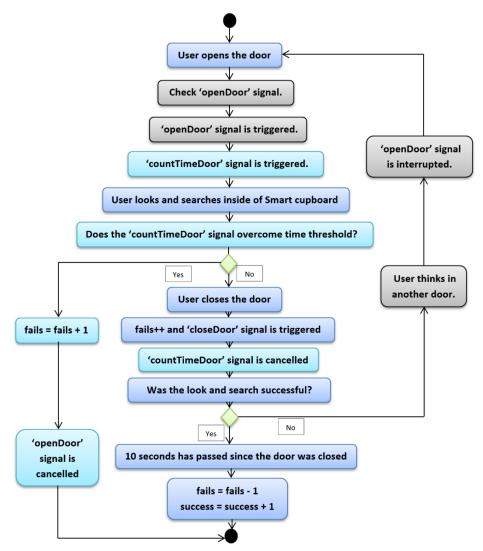
A case Study: A smart cupboard

- International collaboration between:
 - University Complutense of Madrid, Madrid, Spain
 - Edison Desarrollos Company, Teruel, Spain
 - Harvard University, Boston, United States of America
 - Massachusetts General Hospital, United States of America
 - University of Zaragoza, Teruel, Spain
- Publication in international journal with impact:
 - González-Landero, F., García-Magariño, I., Amariglio, R., & Lacuesta, R. (2019). <u>Smart Cupboard for Assessing Memory in</u> <u>Home Environment</u>. Sensors, 19(11), 2552.
- Available in TeleMadrid television, RCN Radio Colombia and more than 10 newspapers.


Overview of the Smart Cupboard approach


Magnetic Door Sensor


Schema of the Connections


Normal Use of Smart Cupboard: Sequence of Actions

User Forgets the Location of something- Detection

User keeps looking inside a compartment for a long time

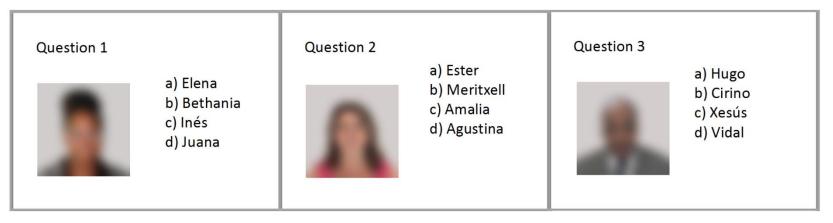
Implementation Details

```
01.
     import RPi.GPIO as GPIO
02.
     #Set Broadcom mode so we can address GPIO pins by number
03.
     GPIO.setmode(GPIO.BCM)
94.
05.
06.
     #This is the GPIO pin number we have one of the door sensor
07.
    #wires attached to, the other should be attached to a ground
    DOOR SENSOR PIN ONE = 18
08.
09.
     DOOR SENSOR PIN TWO = 12
10.
     DOOR SENSOR PIN THREE = 25
11.
12.
     #Set up the door sensor pin
     GPIO.setup(DOOR_SENSOR_PIN_ONE, GPIO.IN, pull up down = GPIO.PUD UP)
13.
14.
     GPIO.setup(DOOR SENSOR PIN TWO, GPIO.IN, pull up down = GPIO.PUD UP)
     GPIO.setup(DOOR SENSOR PIN THREE, GPIO.IN, pull up down = GPIO.PUD UP)
15.
16.
     while True:
17.
         oldIsOpenOne = isOpenOne
18.
19.
         isOpenOne = GPIO.input(DOOR SENSOR PIN ONE)
20.
         oldIsOpenTwo = isOpenTwo
21.
22.
         isOpenTwo = GPIO.input(DOOR SENSOR PIN TWO)
23.
         oldIsOpenThree = isOpenThree
24.
         isOpenThree = GPIO.input(DOOR SENSOR PIN THREE)
25.
```

Smart Cupboard Assembled

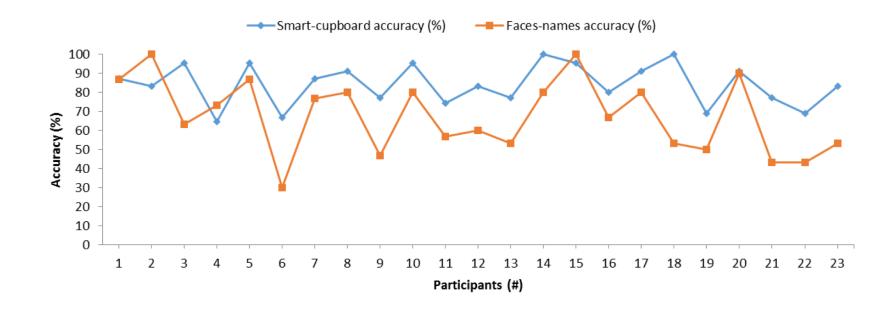
Experimentation

Order of Objects in the Experimentation (random to avoid reasoning for retrieving location)


Object	Compartment	Round	Object	Compartment	Round
Cup			Grapes		
Sweet Corn			Soup cube		
Chili	First		Peach in syrup	First	
Egg			Condensed milk		
Box of Matches			Salt		
Evaporated Milk			Baking powder		
Soda			Green peas		
Breadcrumb	Second	First	Bread of milk	Second	Second
Beer			Jam		
Chili peppers			teaspoon		
Potato			Sausages		
Lentils			Honey		
Olives	Third		Tuna	Third	
Mayonnaise			Теа		
Chocolate milkshake			Oregano		

Example of Distribution of Food for Experiments

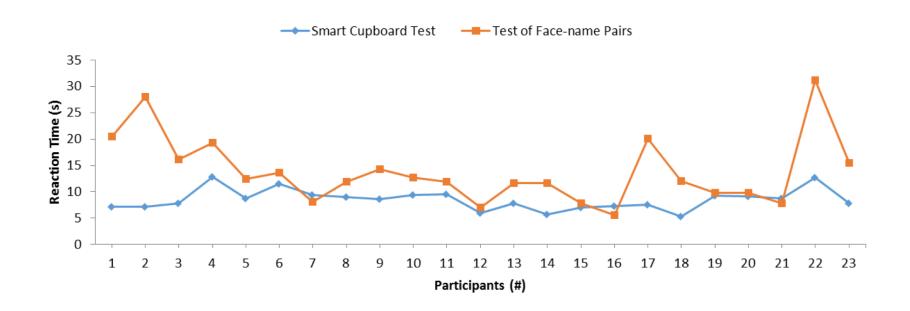
Control Test


Test of Face-Name pairs (well-known and validated in the literature)

Self-reported test

- Do you have difficulty in remembering people's names or phone numbers?
- How often do you find yourself trying to remember the location of everyday items (e.g., your keys, wallet, glasses, etc.)?
- How often do you have to replace passwords (numerical or verbal) because you've forgotten the original one?
- How often do you find yourself asking questions like,
- "What was I about to do next?"

Comparison of Accuracies of Smart cupboard and Face-names

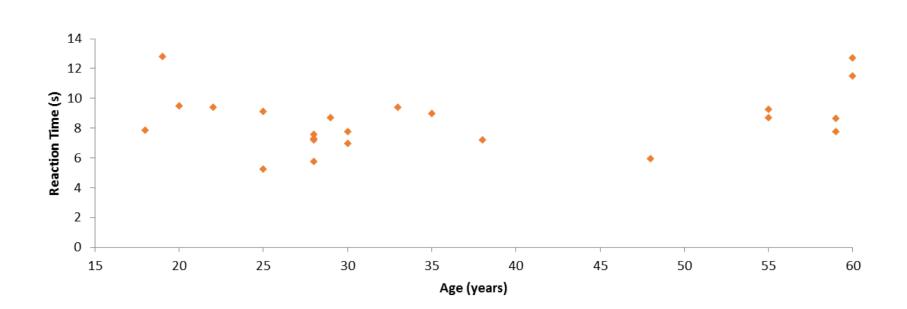

Comparison of Accuracies of Smart cupboard and Face-names

		Accuracy Smart Cupboard	Faces-Name Test
Accuracy Smart Cupboard	Pearson Correlation	1	.597**
	Sig. (2-tailed)		.003
	N	23	23
Faces-Name Test	Pearson Correlation	.597**	1
	Sig. (2-tailed)	.003	
	N	23	23

**. Correlation is significant at the 0.01 level (2-tailed).

Correlation between the accuracy of SC and the accuracy of Face-names test

Comparison of Reaction Times

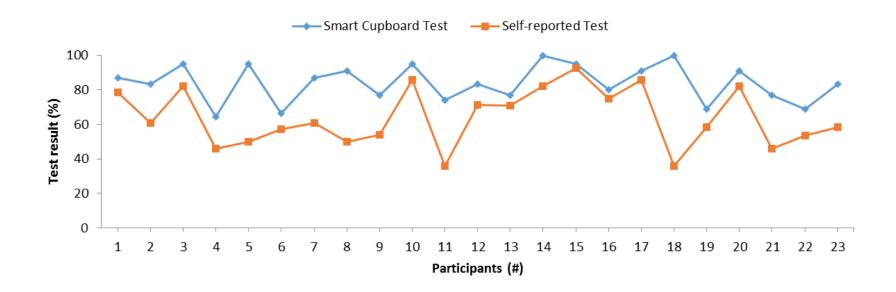


Comparison of Reaction Times

		Reaction Time Smart Cupboard	Reaction Time Face-Name Test
Reaction Time Smart	Pearson Correlation	1	.341
Cupboard	Sig. (2-tailed)		.111
	Ν	23	23
Reaction Time Face-Name	Pearson Correlation	.341	1
Test	Sig. (2-tailed)	.111	
	N	23	23

Correlation between the reaction time of SC and the reaction time of Face-names test

Reaction time in smart cupboard and Age


31

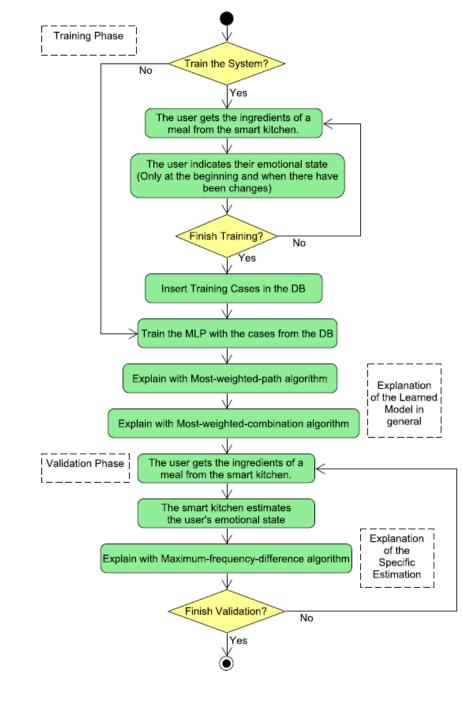
Reaction time in smart cupboard and Age

		Age	Reaction Time Smart Cupboard
Age	Pearson Correlation	1	.092
	Sig. (2-tailed)		.699
	Ν	20	20
Reaction Time Smart	Pearson Correlation	.092	1
Cupboard	Sig. (2-tailed)	.699	
	Ν	20	20

Correlation between the reaction time and age of participants in the smart cupboard test

Comparison of Smart Cupboard and Self-Reported Test

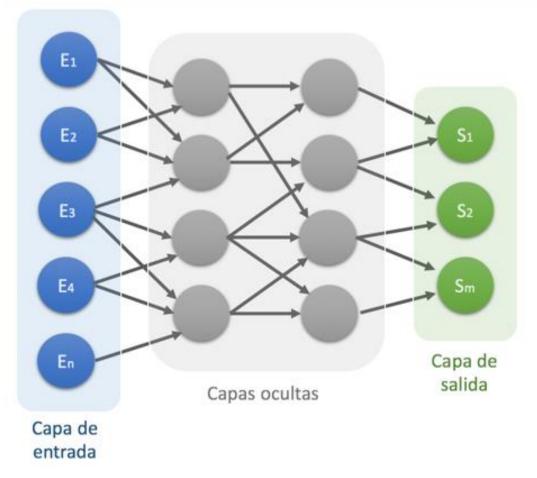
Comparison of Smart Cupboard and Self-Reported Test


		Smart Cupboard	Accuracy Self- Reported test
Smart Cupboard	Pearson Correlation	1	.443
	Sig. (2-tailed)		.034
	N	23	23
Accuracy Self-Reported test	Pearson Correlation	.443*	1
	Sig. (2-tailed)	.034	
	Ν	23	23

*. Correlation is significant at the 0.05 level (2-tailed).

Correlation between accuracy of SC and accuracy of Self-reported test

Human-Centric Artificial Intelligence in smart kitchens


- Reference:
 - García-Magariño, I., Muttukrishnan, R., & Lloret, J. (2019). <u>Human-centric AI for trustworthy IoT systems</u> <u>with explainable multilayer perceptrons</u>. IEEE Access, 7 (1), 125562-125574
- International Collaboration
 - University Complutense of Madrid, Spain
 - City, University of London, United Kingdom
 - Polytechnical University of Valencia, Spain
- Concept:
 - Auto-generate easy-to-understand explanations

Approach for experimenting HAI algorithms in simulated smart kitchens Algorithm 1 Most-Weighted-Path Explanation: It Provides a HAI Explanation Based on the Path From the Output to the Most Relevant Input Based on the Selection of the Most Weighted Dendrites

- 1: function explainMostWeightedPath(mlp, names)
- 2: current \leftarrow mlp.outputNeuron
- 3: while mlp.isNeuron(current) do
- 4: dendrite \leftarrow mostWeightedDendrite(neuron)
- 5: current \leftarrow mlp.connectedTo(dendrite)
- 6: input \leftarrow current
- 7: inputName ← names.inputs[input]
- 8: explanation ← 'In the learned model for the '+names.IoTsystem+', the most relevant input for estimating that you are '+ names.highestOutputValue+' is that '+names.userAction+' '+ inputName+'.'
- 9: **return** explanation

Esquema de Red Neuronal MLP

Algorithm 2 Most-Weighted-Combination Explanation: It Provides a HAI Explanation Based on the Most Relevant Combination of Two Inputs Based the Most Weighted Dendrites of the First and Second Neuron Layers

arre	es of the Flist and Second Fleuron Eugens							
1:	function explainMostWeightedCombination(mlp,							
	names)							
2:	layer $\leftarrow 1$ \triangleright Second layer, as count starts on 0							
3:	numInputs $\leftarrow 2$							
4:	dendrites \leftarrow mlp.getDentritesLayer(layer)							
5:	quicksortByWeightDescendentOrder(dendrites)							
6:	found \leftarrow false							
7:	i ← 0							
8:	while i <dendrites.length and="" do<="" found="" not="" td=""></dendrites.length>							
9:	dendrite ← dendrites[i]							
10:	inputNeuron \leftarrow mlp.connectedTo(dendrite)							
11:	inputDendrites multiple mlp.mostWeightedDendrites(
12:	neuron, numInputs)							
13:	found \leftarrow true							
14:	for $j \in [0, numInputs)$ do							
15:	if inputDendrites[j].weight>threshold then							
16:	combination[j] \leftarrow mlp.connectedTo(
17:	inputDendrites[j])							
18:	else							
19:	found \leftarrow false							
20:	$i \leftarrow i + 1$							
21:	if found then							
22:	explanation \leftarrow 'In the learned model							
	for the '+names.IoTsystem+', the most							
	relevant input combination for estimating							
	whether you are '+names.highestOutputValue+'							
	is that '+names.userAction+' '+							
	names.inputs[combination[0]]+' and							
	'+names.inputs[combination[1]]+'.'							
23:	else							
24:	explanation \leftarrow 'No combination of two inputs is							

24: explanation ← 'No combination of two inputs is especially relevant.'

25: return explanation

Algorithm 5 Maximum-Frequency-Difference Explanation: It Provides a HAI Explanation Based on the Most Discriminative Input, Measured as the One With the Highest Difference of Frequency Percentage for the Given Prediction

- 1: **function** explainMaxFreqDiff(caseInputs, prediction, names)
- 2: $maxDiff \leftarrow minIntValue$
- 3: maxInputName \leftarrow "
- 4: **for** $i \in [0,names.inputs.length)$ **do**

```
5: if caseInputs[i] then
```

```
6: inputName \leftarrow names.inputs[i]
```

- 7: $diff \leftarrow DiffPercen(inputName, prediction)$
- 8: **if** diff>maxDiff **then**

```
9: maxInputName ← inputName
```

```
10: maxDiff \leftarrow diff
```

- 11: explanation ← 'The '+names.IoTsystem+' estimates that you are '+prediction+' because among other reasons '+names.userAction+' '+maxInputName+', which is ''+maxDiff+'% more frequent in people in this '+names.state+' than in people with other '+names.states+'.'
- 12: **return** explanation

Smart Kitchen Simulator (training phase)

Ø Smart Kitchen Simulat	Dr		- 🗆 ×
Bread	Flour	Milk	Normal
Tomato	Butter	Marmalade	Depressed
Sugar	Pasta	Chocolate	
Vegetables	Legume	Chips	
Fruit	Salt	Spicy	
Done	Finish Training		
Phase: Training	·		

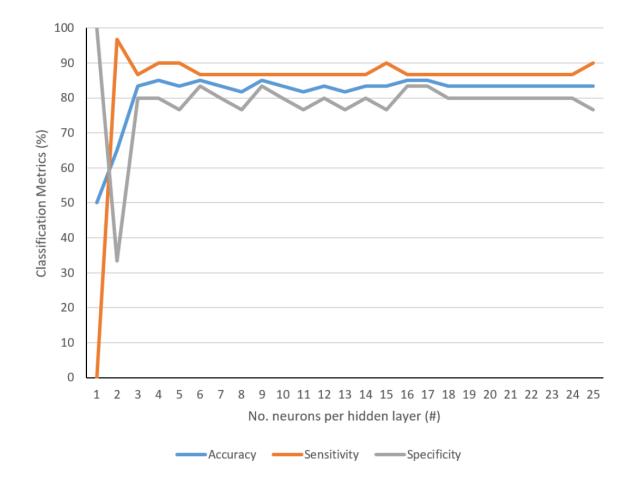
Auto-generated explanation for the learned model

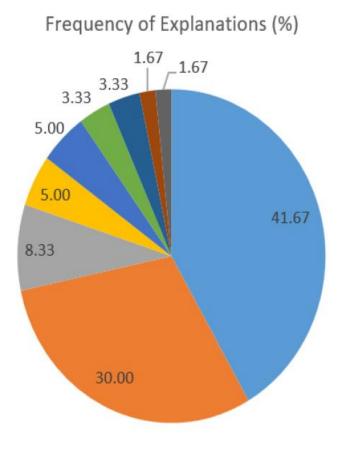
Ø Smart Kitchen Simulato	r		– 🗆 X
Bread	Flour	Milk	Normal
Tomato	Butter	Marmalade	Depressed
Sugar	Pasta	Chocolate	
Vegetables	Legume	Chips	
Fruit	Salt	Spicy	
Done			-

Phase: Validation

In the learned model for the smart kitchen, the most relevant input for estimating that you are depressed is that you are eating Spicy. In the learned model of the smart kitchen, the most relevant input combination for estimating that you are depressed is that you are eating Spicy and Chips.

Auto-generated explanation for one meal

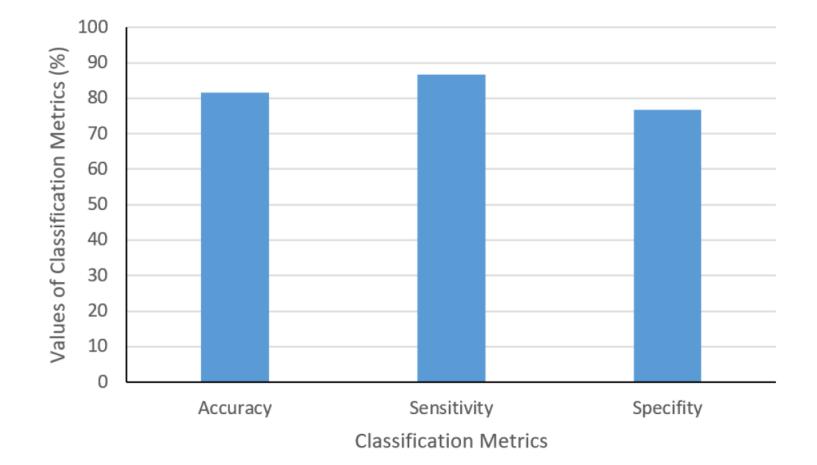

Ø Smart Kitchen Simulato	r		– 🗆 X
Bread	Flour	Milk	Normal
Tomato	Butter	Marmalade	Depressed
Sugar	Pasta	Chocolate	
Vegetables	Legume	Chips	
Fruit	Salt	Spicy	
Done			-


Phase: Validation

Estimation: Depressed

Explanation: The smart kitchen estimates that you are depressed because among other reasons you are eating Spicy, which is 39.1% more frequent in people in this emotional state than in other emotional states.

Adjusting Neural Network parameters



Results about HAI autogenerated explanations

- Reasonable Vegetable explanation
- Reasonable Spicy explanation
- Reasonable Pasta explanation
- Other Reasonable explanations
- Non-Reasonable Tomato explanation

- Reasonable Sugar explanation
- Reasonable Bread explanation
- Reasonable Flour explanation
- Non-Reasonable Salt explanation

Classification Metrics Results

Conclusions and Future Work

- IoT for tracking memory in Activities of Daily Life
- Simulated navigation patterns
- Real Smart-cupboards
- Human-centric artificial intelligence can be applied (e.g. with explainable multi-layer perceptrons)
- Future: Development of more techniques for measuring memory with IoT, E.g.:
 - Smart taps
 - Curtain sensors in doors