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Abstract: As stated in the virtual synchrony model, members joining dynamic groups can obtain the group’s current state from some 

prior member or from a set of members. Existing group communication systems drive that state transfer in different ways, usually 
blocking some or all the group members during the state transfer. This paper formalizes the state transfer problem, formulating the 
generic protocols needed among the members of a group, even for the transfer of big states that would require one or more messages. 

 

1. I ntroduction 

A common technique for building reliable distributed systems is the replication of software components on multiple 
processors. This helps the distributed system to guarantee a quality of service in spite of failures in the underlying computer 
platform. Still there is a need to coordinate the replicated components so that they appear to the client as a single logical 
entity. This coordination means that all the active replicas are in a consistent state. The virtual synchrony model [Birman87] 
can be applied to guarantee such consistent state among these replicas. This model works under a group paradigm: replicas 
are defined as members of a group, which appears to clients as a single entity. Group members can be defined as active or 
passive; only the active members process client requests, and the passive ones just synchronize their states periodically.  

Active group members achieve consistency through reliable group communications: an action on any member is 
propagated to the other members using protocols that provide a reliable message delivery, with a partial (e.g., FIFO, causal) 
or total order [Lamport78]. Groups are not static in the sense that they can incorporate or remove members dynamically. 
The list of non-faulty members in a group, which is called a view, is maintained by an internal service called Group 
Membership Service  (GMS). GMS uses unreliable fault-detectors [Chandra91], commonly based on replicas pinging, to 
detect and expulse faulty members. When this happens, as well as when a member joins or leaves the group, the view 
changes, and GMS is responsible to install the new view in all members. 

Starting from an initial view, each admitted group member could interact with the other members. The simplified 
abstraction seen by developers of groups under the virtual synchrony model is that all the members of the group see the 
same messages in the same order. Because every member sees the same input, they can keep consistent states, if they have 
started from the same initial point [Schneider90]. This condition implies the need to make a state transfer to the joining 
members, so that they also start from the same shared state. 

The extended virtual synchrony model [Babaoglu95] is a variation on the previous model when, because of network 
partitions, several operational subgroups of the original group may coexist. Under the normal virtual synchrony model, only 
one subgroup can stay operational, and, for this reason, those systems are called primary groups [Ricciardi93]. The 
extended virtual synchrony model considers a future merging of the partitioned groups, what implies the need to reconcile 
their states. This problem can be simplified if it is handled as a state transfer, by discarding one of the group states, but it is 
in general a more difficult problem than the state transfer is.  

This discussion shows that the virtual synchrony model relies on efficient and reliable state transfer mechanisms, which 
can be implemented on top of group communication primitives. State transfer mechanisms can also be applied to maintain 
consistency in web servers, distributed databases, and any system that requires handling of replicated data. As an initial 
approach, one or more members send their state in a message to the new members. However, this is not generally enough, 
as the member sending the state and the member receiving it could be target of other group messages. If the new member 
processes some of those messages before receiving the state, and the member sending it is going to process those messages 
after sending the state, both members will likely finish in different, inconsistent states. Additionally, the state could be big 
enough to need several messages to do the transfer, and a new view could be installed between those messages, being also 
possible that the member sending the state falls down before sending the whole state. Although a group could handle all 
these possibilities by defining its own protocols, this is a general problem for any group, so it seems desirable to build these 
protocols inside the group communication logic. 
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Group communications have been a hot research topic during the last years, and several systems have been built 
supporting the virtual synchrony model. This paper focuses on the problems that could happen on a state transfer, and 
formulates a generic approach to solve those problems and discuss several variations. Next section defines the state transfer 
problem and the approach taken by some well-known group communication systems to solve it. We have studied the 
conditions on groups and messages to allow a simple state transfer (without any special processing) and defined a set of 
generic protocols that can be applied by any group. These protocols, shown in the third section, are compatible with those 
used under other group communication systems, and they match them -at least partially- in most of the cases.  

In summary, this work formalizes the state transfer problem, formulating the generic protocols needed among the 
members of a group, even for the transfer of big states that would require one or more messages. 

2. The state tr ansfer problem 

The goal of the state transfer problem is to achieve a consistent state in all the members in the group when one or more 
members with not initialized state join an already consistent group. The initial group could have members without state only 
if a transfer were already being done to at least one of them when the new member was included. 

This definition of the problem already excludes one solution: when the future member contacts an existing group 
member to receive the state and, once received joins the group. This solution would require that the contacted group 
member would keep track of any changes on the state from the moment where the state was sent until the new member is 
inserted in the group. Moreover, those changes will have to be transferred anyway, becoming the transfer state problem as it 
has been specified!  

Although a state transfer can be seen as a bi-directional communication between two non empty sets of members in the 
same group, we first delimitate this problem to the unidirectional communication needed to initialize the state of a joining 
member with the state shared by the already initialized, consistent replicas. The problem domain is a group working under 
the virtual synchrony model, where some new members join the group (this assumes that there is at least one member with a 
defined state). The solution must use the group communication primitives supported by the specific virtual synchronous 
model, mainly the reliable multicast messages.  

To understand this problem, consider as an example a distributed file system, where each replica contains a copy of a 
part of the whole file system. The file system consists of several sections, each one replicated on several machines to 
provide fault tolerance and load balance. The file service is provided by several server groups, each one handling one of its 
sections, and following the virtual synchrony model; messages are reliable and have total ordering (every member sees the 
same messages in the same order). When a replica becomes active and joins the group, it receives the appropriated part of 
the file system from another replica in one or more messages; let’ s suppose also that a third replica sends a message to 
append a chunk of bytes to a specified file that is in the part of the file system being transferred.  

Figure 1 shows one hypothetical scenario, where the replica sending the state receives and processes the new message 
before sending the state. If the new member receives first the append message, it saves it for processing after receiving the 
full state. Then, it adds the new chunk, terminating in an inconsistent state. However, the append message needs to be 
saved, as shown in figure 2. In this figure, the state is sent before processing the append message, and therefore the joining 
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member must have saved the message to get a final consistent state. There are other scenarios where the message is not 
saved, but in these cases, there can be obtained no consistency either.  

The easiest solution would be to block the whole system during a transfer, but this would decrease system performance 
dramatically if the state to send is large or there are often view changes. It is clear on the previous problem that it would be 
enough to buffer every received message in the replica sending the state while this state is not sent to the joining member: if 
the member sending the state does not process any message before sending the state, and the new member also queues the 
input messages until the state is received, both members will finish in consistent states. The problem becomes even more 
complex if the state must be sent in several pieces (for instance, it is not feasible to send the file system in just one message) 
and the replica sending these pieces falls down before finishing. There is still a generic solution to these problems, and this 
is precisely the focus of this paper.  

It is possible to do the state transfer on any group without special support, just building the protocol into the group logic, 
but most of the group communication systems known by us give some support to the applications. Arjuna [Arjuna, 
Parrington95] does automatically a state transfer when a new member joins a group. The state transfer is done in one step, 
blocking the whole system, and group members must just implement two state operations: save_state, restore_state. The 
same approach uses Electra [Electra, Maffeis97], but with a more flexible scheme, allowing transfers in several pieces and 
still using a simple interface: get_state, save_state. In Phoenix [Phoenix, Malloth96], only the members involved in the 
transfer are blocked, but the transfer must be done in just one step, with a similar interface: get_state, put_state. JavaGroups 
[JavaGroups] does not invoke automatically the transfer; this is an operation to be called by the interested member, which 
can request the state from every group member or just from one, generally the oldest one. The member sending its state 
must first make a copy of its state, and while this copy is performed, the member is blocked. When the state is requested, the 
member just sends this temporal copy. It is a transfer in one step, and requires total ordering on the messages; the interface 
is slightly more complex, to do the state copy: SaveState, GetState, and SetState. 

Maestro [Maestro], a C++  interface for Ensemble [Ensemble, Hayden98] allows several approaches to the state transfer. 
A group can specify if it needs a transfer and, if so, it will be invoked automatically. Messages can be classified as safe or 
unsafe; in the former case, they can be sent during the transfer, otherwise they are blocked, but this means that the relative 
order between messages is lost. Additionally, the messages are blocked when they are sent; therefore, if there are messages 
coming from the previous view (those sent once the view has been blocked to install a new view), they would pass the 
blocking even when considered unsafe. Transfers can be done in several steps, as opposed to the latest versions of Maestro, 
which include a new state transfer mechanism in one step. State members automatically send their state, being possible to 
identify the older one. Therefore, any member can update its state using the newest state. The protocol is simple, and has an 
acceptable performance when the state is small, groups have few members, and view changes are unusual. 

The transfer from another active replica is not the only way; for example, Cactus [Cactus, Schlichting93] works under a 
checkpoints scheme. Each replica must store periodically checkpoints of its state, and keep a trace of the messages 
processed from the last checkpoint. If a replica becomes active, it can build its state from those checkpoints. This technique 
is fast when replicas are down during short periods. It also requires every replica to spend some processing time 
periodically, not only in case of a state transfer. 

The proposal made to achieve fault tolerance in CORBA through entity redundancy [OMG98] allows the definition of 
active and passive groups. On both cases, the application can choose to handle its own consistency through its own state 
transfer mechanisms, or to shift this responsibility to the CORBA infrastructure. In the latest case, objects must implement 
an interface that defines the operations get_state and send_state. Optionally, objects can implement a specialized interface, 
which also defines the operations get_update, set_update, to store and retrieve the state incrementally. Every message is 
stored in a log, which can be distributed, and when a member must receive the state, this can be built from the log.  It is first 
received the state, optionally some updates to this state and finally those messages received after having logged the last 
state. If the group is defined as cold passive, there is just one primary member, which stores its state every 100 nanoseconds 
(configurable timer). Backup members will only receive the state if the primary member falls down. If defined as warm 
passive, backup members receive the state after each operation. Therefore, after a failure on the primary member, the 
activation of a backup member takes less time than in the case of cold passive groups. However, this approach is only 
effective when the transfer of the state is less expensive than the processing of a message. Finally, for active groups, the 
state to be transferred is built from the log, and no member must be blocked during the transfer (except the new one). On the 
other side, as with the Cactus system, replicas are spending time continuously storing their states. 

Following sections study the conditions to be satisfied by the groups and their messages on state transfers from one or 
more active replicas. The blocking of the involved replicas is generally needed, except in the simplest cases, but the 
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blocking and filtering of messages is shown to be dependant on the messages ordering. The state transfer in several steps is 
also driven, a requirement to be considered when the group state is large enough. 

3. Model and definitions 

A conclusion of this paper states that even if there is no blocking on any member during a state transfer, it is possible to 
build the state from a set of messages and a message that contains the state that has been reached after having processed a 
subset of those messages. It must be taken into consideration that the order on which those messages and the state message 
is received depend on the application ordering restrictions, and, except when using total ordering, this order cannot be 
predicted at all. Although this conclusion may seem quite natural, we will formulate the problem and demonstrate a solution 
from a formal perspective. This requires first introducing a model for a distributed system with replicated software 
components, as well as the corresponding basic notation. 

Each member has a state, which consists of a private and a common part, the second to be shared with the group. The 
state transfer problem is concerned with the common part. Two members have consistent states if, given that no new 
messages are sent in the group and no external interaction is performed, the processing of every pending message drives 
them to the same final state. The state message is the message sent from a state member that is called transfer coordinator 
or simply coordinator to a joining member, and includes the state of the member in that moment. There can be several state 
messages if the state is split in several chunks.  

The distributed system consists of replicated software components in groups, and a GMS that follows these rules: 

1. Groups are built using the virtual synchrony model. Weak virtual synchrony [Friedman95] is not taken in account in 
this paper, for simplicity, a further discussion is given in [Pena99tr]. 

2. State changes in one member due to some external interaction must be propagated to the rest of members in the group, 
using the group communication primitives. Two behaviors are allowed: a member changes its state and communicates 
it to the group (behavior dynamically non-uniform) or it does first the communication and only when the rest of 
members have received the messages, it changes its own state (dynamically uniform). In the second case, we consider 
that the member itself receives its own message to process it at the same time as the rest of members in the group. 

3. Members behave deterministically: two members with the same state receiving the same messages in the order 
specified by the application will evolve to the same final state. 

4. Joining members do not take any action before the first view is installed and it is accepted in the group. 

The interaction between the GMS and the member is modeled as follows: 

1. Members receive messages sequentially from other members and from the GMS: one message each time, not receiving 
the next one after the previous has been processed. Note that a buffering of the message in the member (the member 
queues internally to be processed afterwards) will therefore be considered as having been processed, as the GMS can 
not be aware of that buffering. Depending on the application, messages from other members can be handled 
concurrently, but the messages sent from the GMS are sequential with respect to other messages from the GMS or from 
other members. 

2. The GMS installs a new view only when all the messages in the previous view have been processed. The GMS is 
considered to be blocked until the view is installed; if the member is buffering messages, the view is only installed after 
they have been extracted from the buffer and processed. 

3. The GMS reports a blocking condition to the members (when a view is blocked, any new message sent would only be 
sent to the group in the next view). 

4. During the blocked period, a member can still send messages, but they are queued in the GMS. After the view is 
installed, they are sent to the other members. The messages sent by one member can be ordered as FIFO (if required by 
the application), but messages sent by different members are considered to be concurrent. 

3.1. Notation 

The previous discussion can be expressed more formally with the following notation. 
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State: S=s+ s’ . The member’s state is split in a global part (s) and a private one (s’). The state transfer problem is concerned 
only with the global, common part. 

Group members: G={g1, g2 … gn} (n ≥ 1). The group includes every member, with or without state. GS={ g1, g2 … gm}  / 
(n ≥ m) represents the list of initialised members (sharing a common state), and can be empty. The not initialized members 
are included in GU, which can be also empty. This notation assumes that members are directly included in the group, and 
the transfer is only started after the members join the group. 

Succession of states: siv={siv1, siv2 … sivl} Each member i has on each view v a succession of states. When the view 
information is not useful, it is removed from the notation: si= {si1, si2 … sil}. On a strongly synchronous system, that is, with 
strong virtual synchrony and dynamically uniform messages with total causal order, every initialized member proceeds the 
same sequence of states: sin=  sjn, ∀i,j ≤ m. 

M essages 

1. Mi j is the ordered set of messages already processed by j but not by i , which have been sent or must be sent to i  (if j 
does not fall down before) 

2. 
�

≠

=
ij

i ji MM : Messages to be processed by i because other members have already processed them. 

3. Mi j = φ,  j ≥ m: joining members do not take any action before being accepted in the group. 

4. If a group is designed to take actions only after receiving a message, no members can have processed any message that 
any other member had not processed when a new view is installed. These members react to external events by sending 
a message to the others, and taking the action only when that message is received. Therefore: Mi j =φ, ∀i,j. We name 
these messages loopback messages; messages processed with total ordering or dynamically uniformly are loopback 
messages. 

5. Mi j = φ, ∀i,j ≤ m �  siv1= sjv1 ,∀i,j ≤ m.: If Mij is null for any pair of members, every state member has the same state 
after a view is installed. 

6. Mnp Is the ordered set of messages already sent by any group member but not yet processed by any of them. If messages 
are not dynamically uniform and are sent by a member after having processed it, then Mnp = φ. Groups with total 
ordering or messages dynamically uniform will have non empty Mnp. If the order is other than total, it will be empty 
except when members react exclusively to the reception of messages (loopback messages, the sender of a message must 
also process it). 

7. Messages ordering: M ⊕ M’  means to process both groups of messages in the order specified by the application, while 
M + M’  means to process first M and later M’ . 

8. Set of messages. M = M’  means that both sets of messages are exactly the same, including the messages order. M ≈ M’  
means that both sets include the same messages, but the order can be different, depending on the application 
restrictions. 

9. Messages subset: M means a subset of the messages in M . 

State message. ms / sO +  ms =  s: A member on its initial state receiving a state message adopts the state included in the 
message. If the state is sent in several chunks, the previous rule is specified as: sO +  (ms1 ⊕ ms2 ⊕ …⊕ msn)= s.  In general, 
msi

j means the jth chunk of state si, and Mj is the group of messages in M that modify the jth chunk; note that these same 
messages could modify other chunks as well. 

4. State transfer requirements 

For the purposes of this presentation, we impose several restrictions that are later removed: no view changes are 
produced during the state transfer, the state is sent in just one message, and no messages are sent inside the group during the 
transfer. We consider the entire group of messages, included the state message to be restricted to the same order. These 
requirements overlook the mechanisms to detect when a transfer is finished or to detect when there are no members with 
state. 
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Let’s suppose three members, one of them to receive the state. The members with state, g1 and g2, may start with a 
different initial state, but will reach the same final state after processing the pending messages. These messages are those 
sent in the previous view during the blocked period, and are different for each member: 

2122212111 ,:,: MMbeingMMnpgMMbeingMMnpg =⊕=⊕  

Any member with state can be the coordinator; they will process a subset of the pending messages to get an intermediate 
state (they do not have to be the same on both members), and will send the state message in that moment; afterwards, they 
will process the rest of messages. If we split the set of messages to process in two subsets, it is possible to write: 
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The joining member must process its own pending messages and the state message to build the same final state: 
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In general, for an undefined number of members, we can write for a state member: 
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In addition, for a joining member, the following equation must be verified, whatever is the coordinator sending the state: 
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Putting together these two equations, the following condition must be achieved: 

( ) ( ) [ ]3: δijiiOiiO msMMMnpsMMnpmssmi ⊕⊕⊕+=⊕++≤∀  

This is the general state transfer condition: it must be possible to build the state from a set of messages and a state 
message whose included state has been reached after having processed a subset of those messages. It must be taken in 
consideration that the order on which those messages and the state message is received depends on the application ordering 
restrictions, and, except when using total ordering, this order cannot be predicted at all.  

An example is a group handling a list of clients whose only update is the operation ‘add client if not yet existing’ , having 
the state message the whole list of clients. On the other side, if this group would also allow operations like ‘ remove client’ , 
the previous condition would not always be verified. Be the case where two messages are sent to the group, one adding a 
client and the second one removing the same client. A member could process the first message and send afterwards the state 
message, which would include that client. Later, the second message would be processed, finishing in a state where the 
client is not present. The joining member could process first both messages and receive then the state message, resulting in a 
state where the referred client is present! 

When the state transfer does not inhibit the sending of new messages, the condition to achieve is very similar: 

( ) ( ) [ ]4: δMmsMMMnpsMMMnpmssmi ijiiOiiO ⊕⊕⊕⊕+=⊕⊕++≤∀  

This can be simplified to [δ5], that can be also understood as [δ4] when the blocking period before the view change is so 
short that no member processes or sends any message: 
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( ) [ ]5: δMmssMmssmiMMMMnpM iOiOjii ′⊕+=′++≤∀	⊕⊕⊕≡′  

It must be highlighted in the previous formula that the subset M’ of messages in the left side is composed by those 
messages in M’ not yet processed when the state was sent, but the whole set of messages along with the state message must 
be processed on the right side. Additionally, the state message should be processed between any two messages in this set, 
without modifying the final state reached. A possibility is to include in the state message information on the messages 
already processed. 

An interesting case occurs when the state is sent immediately after the view is installed. The other limit case, to send it 
when every pending message has been processed is not so interesting, because it is hard to implement in an asynchronous 
system (how to know that there are no messages left?); additionally, no new messages could be sent in the group while the 
state is being transferred. When the state is sent immediately after the view change notification: 

( ) [ ]
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The last simplification [δ7] is valid for groups having only loopback messages. It means that there must be no difference 
on processing first the state message and later a set of messages, or processing the whole set of messages with the state 
message between any two messages in that set. An example of group accomplishing [δ7] is a counter where every message 
has a relative meaning (‘ increment counter’ , ‘decrement counter’ ) and the state message is also understood as a relative 
increment (‘ increment counter by value’ ). Even this oversimplified example does not verify [δ5], because the state message 
could be sent after processing some of the ‘ increment counter’  messages in the current view, messages that will be 
processed as well by the joining member, resulting in different final counters. 

Previous conditions are difficult to achieve for generic groups. Even the easiest condition [δ7] has no general solution, 
because no group ordering can make the joining member to receive first the state message and later the rest of messages, 
what would solve directly the equation! 

We propose the following solution to validate the state transfer for any kind of group messages and state messages: the 
state message is sent immediately after a view change, and the joining member blocks any message until the state message 
is received and processed. Once it is processed, the blocked messages are unqueued and processed in the input order. If the 
group has no-loopback messages, it is also needed to discard Mji, the messages that where already processed by the 
coordinator on the previous view. In this case, we have: 

( ) ( ) MmssMMmssMMmss iOjiiOjiiO
′′++=′′⊕++=′′⊕⊕+  

Moreover, the required condition [δ6] is achieved. Because only those messages sent by the coordinator before the state 
message (that is, those sent on the previous view) must be discarded, this solution implies that the messages ordering must 
be, at least, FIFO (only if no-loopback messages are used in the group). And because a group could use both loopback and 
no-loopback messages, it is an application decision to select the messages (those being no-loopback) to discard. 

The previous equations (for any kind of group) do not change if there is more than one joining member, having no 
difference if there is one coordinator for each joining member, or one for all of them and the transfer is done concurrently or 
sequentially. If sequentially, the solutions based on the state being sent immediately after a view change will require now 
that the coordinator will not process any message until every transfer is finished. 

4.1. View changes 

If there is any view change before the coordinator sends its state message, the condition to be verified by a generic 
group is still the one without view changes [δ5]. To demonstrate this, we will suppose that after the state message is sent, no 
member will send any more messages (to reach therefore the same final state) and no new views are installed in the group. 
The joining member will have to process a set of messages M. It will first process a subset of M, then process the state 
message and finally the rest of messages in M: 

FBAOBA sMmsMsstateMMMmessages =++++= ::  
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But, if the group verifies [δ5], the order on which the state message is processed must not modify the outcome: 

FOBAOBAO sMmssMMmssMmsMs =++=+++=+++  

And the state message includes a state built after having processed a subset of the messages in M, just like the solution 
in [δ5]. Therefore, no new restrictions are needed if there are view changes before the state message is sent, even if the 
coordinator falls down and other state member becomes the new coordinator. 

Our proposal to solve the state transfer on generic groups not achieving [δ5] means that, due to the message buffering, 
the members involved in the transfer can be seen by the rest of members in the group as slower members. More important is 
that, when a view change is produced before the transfer has finished, this solution violates the virtual-synchronous 
multicast delivery property. This property states that any pair of processes that are both members of two consecutive group 
views must receive the same set of multicasts during the period between those views. When the view is going to change, 
both the coordinator and the joining member have messages queued that cannot process, because the transfer has not yet 
finished. In fact, the property is violated if the messages are not received; however, although not processed, they are 
received, and the groups must take this possibility in account. The system can be modeled in two ways: 

1. The coordinators and joining members are considered as excluded temporarily of the view. They continue blocking the 
messages, and only when the transfer has finished, the queued messages will be processed. They would proceed 
probably from different views, but they are still stored in the right order.  

2. The joining member is not considered to be in the view while the state has not been transferred. In this case, the 
coordinator would cancel the transfer and would process the queued messages, restarting the transfer on the new view. 
The joining member must discard the queued messages if it receives a view installation event before the state message 
arrives. Because the coordinator could have sent the state message before realizing that the view was blocked 
(synchronization problem), the joining member must be able to discard this message, which will arrive during the next 
view. This discarding can be achieved by including the view identity on the state message. 

Note that both solutions are excluding, at least, the joining member as being a real member of the group. This is 
equivalent to a solution where the state is sent to a member not belonging to the group, and only when this transfer has 
finished, the new member joins the group. 

If a new view is installed and the coordinator of an unfinished transfer falls down, other state member must take that role 
and do the transfer. Nevertheless, our proposal, as happened with the simplifications [δ6,7], assumes that the state message 
is sent before the coordinator processes any message of the new view. The joining member expects therefore a message 
with the state of the coordinator after the view installation. If this coordinator falls down, any new coordinator should send 
that state. To achieve this new condition, there are several possibilities: 

1. State members are saving their state after each view change. Moreover, because two members could join on 
consecutive views, they should store several states. 

2. Or they freeze their states by buffering every message until the member gets the state: every member in the group is 
blocked. 

3. Or every state member behaves as coordinators, sending its state once installed a view with new members.  

4. A last and preferred solution is that the joining member discarded any messages buffered during the previous view: just 
as if the member would be joining the group on the last view. This solution is the same as the second possibility we had 
pointed before for the modeling of the system, and it is therefore our favorite one. 

Finally, it must be considered the case where the view is installed before the coordinator sends its state, and it must 
coordinate as well the transfer to new members on the latest view. Each member expects the state as it is before processing 
any message of the current view: the coordinator before starting the new transfer will have to process the messages buffered 
from previous views. From an implementation point of view, two queues are therefore needed, one to queue the messages 
on the current view and other for previous views. 
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4.2. Large state transfers 

Large states could require splitting the state message in several chunks. The joining member must receive now every 
chunk to build its state, and different coordinators could send each chunk. Under these circumstances, the new member must 
satisfy: 

( ) [ ]8:/ 21 δF
p

UBAjOj smsmsmsMMnpsmjg =⊕⊕⊕⊕⊕+≥ �  

That is, the final state is built from the state messages and the list of pending messages; but the state messages could be 
sent from different state instances and could already include some of the messages that the joining member must process. 
This is a general condition difficult to achieve by a generic group. An example is a group that stores every group message, 
and initializes a joining member by sending those messages; but in this case, every state message is referring to the same 
state instance, that is, sA= sB=…= sU..  

Even when there is only one coordinator, the previous condition is not simplified, as the chunk state messages could 
refer to different state instances (the coordinator can evolve due to the incoming messages). If every chunk would refer to 
the same state, the solution would be easier. As we saw in the normal transfer, waiting to process every message is a 
difficult solution, and we will better focus on the case when no messages have been processed. In this case, it must be 
noticed that there is no difference between having only one coordinator or several of them if the messages are loopback 
ones, as every coordinator would have the same state to send. The coordinator starts on its initial state and will evolve to the 
final one by processing every pending message (Mnp and M i); the joining member processes its pending messages (Mnp 
and M j) and the chunk state messages to achieve the same final state. If there is just one coordinator: 
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If several coordinators are transferring the state, M i must be empty for every member: 
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These two equations look as simple complications on the formulas obtained for only one chunk state (δ6 & δ7): the 
order on which any pair of messages, including the state chunk messages, is processed cannot modify the outcome.  

There is a special case when the state and messages are defined in such a way that each message can only modify one of 
the state chunks. If there are p chunks, and l is a specific chunk, we can see for each chunk, from [δ8]: 
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[δ11] must be verified on each chunk l, when the state is received from any coordinator i, that could be different for each 
chunk. This coordinator has processed a part of the incoming messages before sending its chunk message: 
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And comparing now [δ11] and [δ12], we obtain an equation like [δ3], but that must be achieved for each chunk, having 
perhaps different coordinators on each chunk transfer: 
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If messages are not blocked while the transfer is being done, they must just be included in the previous equation: 
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To obtain a general solution for any kind of groups, we extend the solution proposed for transfers in one state. Messages 
must be now blocked on the joining member until the last state message is received, and the application must decide which 
is this last state message. If there are no loopback messages, every message coming from the coordinator with lower 
timestamp (FIFO order is therefore required) than the last state message must be discarded. This solution means that only 
one member is to be used as coordinator for a specific transfer. However, because the coordinator cannot process any 
message before having completed the transfer, it has sense to use only one coordinator, and not to block several members. 

4.3. View changes on large state transfers 

When the state of a group can be decomposed into several parts, and messages are designed to update exclusively one of 
those parts, the state transfer problem can be decomposed in n one-chunk state transfers, where each chunk corresponds to 
each of the state parts. In this case, these groups share the same problems under view changes as we already discussed in the 
previous section. On generic groups achieving [δ8], that condition does not become more complex (even), although the state 
members must now consider the case where the coordinator(s) falls down before ending the transfer. 

The solutions presented on the previous point based on the sending of the coordinator’s state before processing any 
further message, can use under view changes the same strategies pointed out for one-chunk transfers. Related to our 
preferred solution, where the joining member discards any previous messages, note that it must also discard the previous 
state messages! This is an expensive solution: the state is being split to make faster (and perhaps feasible) the transfer, but it 
must be restarted each time the coordinator falls down. Even supposing that repeated coordinator crashes shouldn’t be usual 
at all, a bi-directional protocol between the joining member and the coordinator would help the transfers, allowing also the 
transfer of static information through the coordinator. 

5. Conclusions 

We have shown that only the simplest systems can perform a basic state transfer without doing some extra work, notably 
the blocking of messages. A general approach to solve the state transfer problem is: 

1. The state message is sent immediately after a view change, and the joining member blocks any message until the state 
message is received and processed.  

2. After processing the state message, blocked messages are unqueued and processed in the input order. If the group has 
no-loopback messages, it needs to discard those messages that where already processed by the coordinator on the 
previous view. In this case, FIFO ordering is required. 

3. The joining member is not considered to be in the view while the state has not been transferred. When a new view is 
installed, the coordinator stops the transfer, processing any buffered message. The joining member discards those 
buffered messages, waiting for a new transfer on the next view. The state message would include the view identity, to 
be discarded in the case of being received on the next view. 
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4. If the state message is sent in several chunks, messages must be blocked on the joining member until the last state 
message is received, and the application must decide which is this last state message. If there are no loopback 
messages, every message coming from the coordinator with lower timestamp than the last state message (FIFO order is 
therefore required) must be discarded.  

5. If the state is sent in several pieces and the coordinator falls down, the basic solution is that the joining member will 
discard the state messages. The performance penalty to pay in this case can be avoided by using a bi-directional 
protocol on the transfer; the joining member is therefore able to transmit to the new coordinator its state. This solution 
is not universal, but could avoid the need to re-send the state messages.  

A bi-directional protocol can be useful when the state is transferred in several chunks, and therefore the whole state 
transfer could be modeled to have an initial transfer of information from the joining member to its coordinator. This 
information does not have just to be its transfer state, but also some static information could be transferred in this way 
between members. 

The second section discussed the state transfer mechanisms for some of the existing group communication systems. 
When the state was transferred from an active replica, the whole system was generally blocked while the transfer was 
performed, although some systems just block the involved replicas. Moreover, generally only one step was allowed. We 
have shown how this block must be performed, depending on the kind of message ordering, and its extension when several 
steps are convenient due to the state size. We have not covered the state recreation from a log file, like the checkpoint 
strategy followed by Cactus or designed in CORBA. Although this paper does not discuss implementation details like the 
coordinator election or how to handle a group without state members, these issues are solved and implemented, together 
with the protocol described in this paper, as a package of C++ classes called Sensei [Pena99], built on top of Ensemble. This 
implementation does take into account the previous implementation details, allowing a huge flexibility for the design of 
reliable distributed applications. It also specifies the higher-level bi-directional protocols that allow a transfer of information 
between joining members and their coordinators, considering both pull and push transfers (depending on the information 
being requested by the joining member or offered by a state member). 
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