

1

State transfer for active replicas in CORBA

Luis M. Peña1, Juan Pavón1

1 Dep. Sistemas Informáticos y Programación

Universidad Complutense de Madrid
Ciudad Universitaria s/n

28040 Madrid, Spain

l ui s mp@s kynet . be

j pavon@si p. ucm. es

Abstract. Current Fault Tolerant CORBA specification by OMG addresses fault
detection, notification, analysis and recovery for object replicas in a distributed
environment. This paper addresses the open issue of state transfer in groups of
active replicas under an application-controlled consistency style, which must be
flexible to cope with different application requirements, such as transfer of large
states, non-blocking during state transfer, and coordinator election.

1 Introduction

The Object Management Group (OMG) has just approved the standard for Fault Tolerant
CORBA [OMG99]. This deals with replication of objects (instead of servers) in a CORBA
environment. The standard tries to support a wide range of requirements, such as passive and
active replication modes, control of the creation and the consistency of the replicas by the ap-
plication or the fault tolerance infrastructure, automatic or application-driven checkpointing,
logging and recovery from faults, while keeping minimum impact in the ORB.

This paper addresses an open issue in the specification: the state transfer in groups of active
replicas under an application-controlled consistency style, which must be flexible to cope with
different application requirements, such as transfer of state in one step or in several (for large
states), blocking or non-blocking of server object groups during state transfer, and election of
coordinator for the state transfer.

2 Fault Tolerant CORBA

The key component of the Fault Tolerant CORBA architecture for management of the object
group is the ReplicationManager, which should be also replicated to be fault tolerant. The

2

ReplicationManager interface inherits three interfaces: PropertyManager, GenericFactory,
and ObjectGroupManager.

The PropertyManager interface allows the user to define fault tolerance properties of object
groups, that basically determine the responsibilities of the infrastructure. The most relevant
properties are ReplicationStyle, MembershipStyle, and ConsistencyStyle.

The ReplicationStyle sets how the state is maintained on the replicas; it can be stateless, cold
passive, warm passive, active and active with voting (this last one is not supported in the cur-
rent specification). Passive replications are based on one single member, the primary member,
processing every method invocation to the group, which contains as well backup members. In
the case of warm replication, backup members are updated periodically with the state of the
primary replica; in the case of cold replication, this update is only done when needed for recov-
ery. Under active replication, every replica processes each method invocation, and duplicated
requests or replies are suppressed. This style requires a group working under the virtual syn-
chrony model [Birman87].

The MembershipStyle determines whether group membership is under the responsibility of the
application (application-controlled) or the infrastructure (infrastructure-controlled). In the
latter case, the ReplicationManager invokes the required factories to create the members
needed to satisfy the group properties, like the initial or the minimum number of replicas. In
the first case, the ReplicationManager provides the operations to do manually the insertion
and extraction of members in groups, to define the primary member and the locations of each
group member.

The ConsistencyStyle can also be application-controlled or infrastructure-controlled. When
controlled by the application, this must maintain its own consistency at each moment: after
each group invocation or when a new replica is added, which must therefore receive the appro-
priate group’s state. Alternatively, when controlled by the Fault Tolerance infrastructure, the
application group objects must just implement a basic interface, Checkpointable, which pro-
vides simple setState and getState methods.

i nt er f ace Checkpoi nt abl e {
 St at e get _st at e () ;
 v oi d set _st at e (i n St at e s) ;
} ;

i nt er f ace Updat eabl e : Checkpoi nt abl e {
 St at e get _updat e () ;
 v oi d set _updat e (i n St at e s) ;
} ;

Optionally, objects can implement a specialized interface, Updateable, which also defines the
operations get_update, set_update, to store and retrieve the state incrementally. The infra-
structure keeps the checkpointing, logging, activation and recovery mechanisms required to
maintain a strong consistency and to install the group’s state on any new replica. This consis-
tency means, under the passive replication, that after a state transfer to a backup member, this
is consistent with the primary member (or the previous primary member, if cold replication).

3

Under active replication, the strong consistency requires that after each method invocation,
every replica has the same state. If the replication is not stateless, the behaviour of each mem-
ber must be deterministic and each member must start in the same state.

This specification means that when the Fault Tolerance infrastructure must keep strong consis-
tency, replicas are periodically requested for their state. The infrastructure stores the messages
processed by every replica and requests the state to the replicas according to the Check-
pointInterval property (defined in units of 100 nanoseconds). When a new replica is included
in the group, the state can be built from the last stored state and the log of messages that have
been processed after the state was retrieved.

Cactus [Schlichting93] works under a similar scheme. Each replica must store periodically
checkpoints of its state, and keep a trace of the messages processed from the last checkpoint. If
a replica becomes active, it can build its state from those checkpoints. This technique is fast
when replicas are down during short periods but it requires every replica to spend some proc-
essing time periodically, not only in case of a state transfer.

Most of the existing group communication systems with support for active replication perform
the state transfer from another active replica. Arjuna [Parrington95] does automatically a state
transfer when a new member joins a group. The state transfer is done in one step, blocking the
whole system, and group members must just implement two state operations: save_state, re-
store_state. Electra [Maffeis97] uses the same approach, but with a more flexible scheme,
allowing transfers in several pieces and still using a simple interface: get_state, save_state. In
Phoenix [Malloth96], only the members involved in the transfer are blocked, but the transfer
must be done in just one step, with a similar interface: get_state, put_state. JavaGroups does
not invoke automatically the transfer; this is an operation to be called by the interested mem-
ber, who can request the state from every group member or just from one, generally the oldest
one. The member sending its state must first make a copy of its state, and while this copy is
performed, the member is blocked. When the state is requested, the member just sends this
temporary copy. It is a transfer in one step, and requires total ordering on the messages; the
interface is slightly more complex, to do the state copy: SaveState, GetState, SetState.

Maestro, a C++ interface for Ensemble [Hayden98] allows several approaches to the state
transfer. A group can specify if it needs a transfer and, if so, it will be invoked automatically.
Messages can be classified as safe or unsafe; in the former case, they can be sent during the
transfer, otherwise they are blocked, but this means that the relative order between messages is
lost. Transfers can be done in several steps, as opposed to the latest versions of Maestro,
which include a new state transfer mechanism in one step. State members automatically send
their state, being possible to identify the current one. Therefore, any member can update its
state using the newest state. The protocol is simple, and has an acceptable performance when
the state is small, groups have few members, and changes in the group membership are un-
usual.

This paper specifies a state transfer interface for those active CORBA groups under an appli-
cation-controlled ConsistencyStyle. This interface must allow flexible transfers to be adapted
to any generic group. The following section includes the requirements for the state transfer,

4

with the adaptations needed to the fault tolerance IDL specification, and the section after
shows several use cases for a better understanding of this proposal.

3 State tr ansfer requirements

On an active group, two cases require a state transfer. First, when one or more members join
the group and need to receive the state from the old members. Second, when the group has
been partitioned due to network problems, with the subgroups progressing independently, and
the group is re-merged, making a state transfer necessary between the subgroups. This second
possibility is not afforded in this paper for two reasons: its complexity and the extra require-
ments needed to keep the consistency (Fault Tolerance CORBA specification does not address
object group partitioning either).

Although every member in the group has at any moment a specific state, only those members
sharing a common, initialised state will be considered as state members. Those members
whose state is not coherent with this global state are considered as stateless members.

The simplest state transfer from an active group to one or more joining members consists of
the state being sent in one multicast message from one state member. The joining members
receive it and the other active members see the message as the trigger to consider that the
transfer has finished. The selection of the member that sends the state can be based on the
properties of the view synchrony model as every group member receives the same ordered list
of members, called a view. According to this, one possibility is to select the state member with
the lowest range in the view. This member is the coordinator of the state transfer.

Several circumstances can make this scenario more complex. If the state to transfer is large
enough, it should be sent in more than one message, in order to avoid blocking the coordinator
while it builds the message with the state (as no updates can be performed on that member in
the meantime). The possibility to send the state in several steps implies as well that a transfer
can be cancelled due to a failure of the coordinator; in this case, a transfer synchronization is
required. The interface should anyway stay simple if the transfer is done in one step.

Other point that can affect the performance of the group is the election of the transfer coordi-
nator. An application can select one member to do every transfer. This member will normally
perform worse that the other members, but frees them of doing this task. At the other extreme,
a different member can be selected each time a transfer is required, to achieve load balance.
Additionally, because a member can be selected to do several transfers, these transfers can be
done concurrently or sequentially.

Finally, group blocking must be taken into account while the transfer is performed (i.e., the
group does not accept method invocations while the state transfer is performed). If the coordi-
nator can update its state during the state transfer, a re-synchronization will be needed. A sim-
ple way to avoid this additional complexity is blocking the group during the transfers, but the
performance can degrade dramatically if state transfers are required very often.

5

3.1 Transfer synchronization

The basic functionality to keep consistency of state is covered by the existing Checkpointable
interface, enough to get and set the state. However, if the state is transferred in several chunks,
some synchronization is needed between the stateless member and the coordinator to identify
the chunk being transferred; this synchronization is also needed to restart a previously can-
celled transfer. Although the state chunks can include the required synchronization, to define a
separate object for that purpose allows for a better and clearer design. This object is called
phase coordination, and it is defined by the application; from the transfer system’s point of
view, this phase must just flag when the transfer has finished. An example of a phase object is
one containing the number of chunks to transfer and the next chunk to be transferred, flagging
the end of the state transfer when both numbers are equal.

abst r act val uet ype PhaseCoor di nat i on {
 bool ean i sTr ansf er Fi ni shed () ;
} ;

The definition of this object makes use of the Objects by Value functionality. If an interface
would be used, the checking of the end of the transfer would need a remote call. If a structure
were used, there would be no possibility to extend the type to include the specific application
behaviour, as IDL structures do not allow inheritance.

When a state member is called to obtain its state, it must return the PhaseCoordination asso-
ciated to that state, which is transferred to the joining member. As state transfers are now done
in several steps, if the state member fails, a new transfer should be started from the beginning.
In order to allow the continuation of a cancelled transfer, two new methods are added.
sync_transfer is called on the stateless member to specify the next PhaseCoordination ex-
pected; this phase is passed to the coordinator as a parameter to a method start_transfer
These methods are specified in the interface StateHandler, which has no connection with the
Checkpointable interface. To specify when a group is using the basic functionality or the ex-
tended one proposed here, we define a group property UseBasicStateTransfer:

t ypedef bool ean UseBasi cSt at eTr ansf er ;
i nt er f ace St at eHandl er {
 voi d s t ar t _t r ans f er (i n Locat i on j oi ni ng_member ,
 i nout PhaseCoor di nat i on phase) ;
 voi d sync_t r ansf er (i n Locat i on coor di nat or ,
 i nout PhaseCoor di nat i on phase) ;
 St at e get _st at e (i nout PhaseCoor di nat i on phase) ;
 voi d set _st at e (i n St at e s,
 i n PhaseCoor di nat i on phase) ;
} ;

• start_transfer: call to the state member when a transfer is going to start, to allow any pre-
processing that the application may need to perform, and to synchronize the transfer with
the joining member. It returns a phase which will be used in the next call to get_state.

6

• sync_transfer: call to the stateless member when a transfer is going to start. If there was
already a transfer and the previous coordinator failed, this method is called with the last
received phase (a nil reference if it is the first transfer), and must return the next expected
phase.

• get_state: the state will be requested while the phase returned does not flag the end of the
transfer.

• set_state: called on the stateless member.

The previous interface is only valid when the transfer includes one coordinator and only one
new member receiving the state. The reason is that the probability of having several members
joining the group at the same time, and therefore targeting the same transfer, are usually very
low. The coordinator could still be programmed to do several unrelated transfers at same time,
but the performance increase obtained could not be appreciable, as the application must sup-
port several threads getting the state at the same time, and solve the potential synchronization
problems.

3.2 Coordinator election

There are different strategies to select the state member that will be responsible for controlling
a state transfer: either the joining member chooses its coordinator member (pull transfer), or
the state members decide which of them will make the transfer (push transfer). The pull proto-
col performs better [Peña99] when hardware broadcasts are supported, otherwise the push
protocol is preferred1.

The election of the coordinator in both cases can be done automatically by the state transfer
infrastructure, or driven by the application. In the first case, the simplest way is to let any
member be the coordinator. Another possibility is to associate weights to each member, allow-
ing a load balance between the state members or to leave this task to one or several predefined
members, those with higher weights.

If the application has the responsibility to select the coordinator, it must know the list of state
members. The current Fault Tolerant CORBA specification defines an operation to retrieve the
members belonging to one group (location_of_members), but this operation just associates
statically a string (Location is defined as CosNaming::Name) to each member. Each member
should therefore associate that location to a responsibility degree in the transfer task, and the
association would be static, making it difficult to include new members in the group.

Our proposal introduces a new concept: properties associated to each member. If the applica-
tion is going to choose the coordinator, it is presented with a list of the state members, along
with their associated properties. If the election is automatic, each member can have a weight

1 For this reason, we consider the service to be predefined as push or pull, a group cannot

specify its preferred protocol.

7

associated, and that weight is used by the infrastructure to choose the coordinator. This weight
behaves as a predefined property with name FT::COORDINATOR_WEIGHT.

When the coordinator is chosen by the application, its object members must implement the
interface CoordinatorElector, which defines one method called get_coordinator: the locations
of the state members are presented, and one location must be returned deterministically2.

i nt er f ace Coor di nat or El ec t or {
 Loc at i on get _coor di nat or (i n Locat i ons l ocat i ons) ;
} ;

3.3 M ember properties

The state of a group can be seen as the state of one member that is the only member in the
group. However, properties are associated to each specific member, and should have no visibil-
ity outside the group. In other words, properties are not part of that state and no output from
the group should be affected by those properties. Only group domain operations should be
affected, like the choice of the member that must perform some specific task. Examples of
such properties are the location of each member, or their weight or responsibility to perform
specific tasks.

Other difference between the global state and the member properties is the required transfer.
When a member joins a group, this group must transfer its state. However, the properties must
be transmitted in both ways: a new member is considered to have properties but not an initial
state.

The fault tolerance specification already defines a Property structure, perfectly valid for our
purposes. The PropertyManager interface provides methods to set properties statically as
defaults for any group created by that manager, or dynamically for a specific group.

t ypedef CosNami ng: : Name Name;
t ypedef any Val ue;
s t r uc t Pr oper t y {
 Name nam;
 Val ue v al ;
} ;
t ypedef s equence <Pr oper t y> Pr oper t i es;

We define two additional properties, for the use of member properties and the coordinator
election: UseMemberProperties, CoordinatorElectionStyle.

t ypedef bool ean UseMember Pr oper t i es;
t ypedef l ong Coor di nat or El ect i onSt y l eVal ue;
c onst Coor di nat or El ec t i onSt y l eVal ue
 COORD_ELECTI ON_I NF_CTRL = 0;

2 On a pull protocol, this election doesn't have to be deterministic, as only one member, the one

requesting the state, must select the coordinator.

8

c onst Coor di nat or El ec t i onSt y l eVal ue
 COORD_ELECTI ON_APP_CTRL = 1;

The PropertyManager interface granularity allows the specification of properties for groups,
not for the members themselves. However, it is possible and effective to specify a new prede-
fined property that associates for each location a set of properties. If the group uses an infra-
structure-controlled membership, the properties will be transferred to the factories creating the
individual group members; otherwise, the application itself must specify the properties when
the objects are created.

The PropertyManager interface includes a method to modify dynamically the properties of a
group, but it would be impractical to modify the properties of a member through this method
because the whole group's properties must be specified. Additionally, this operation would be
prone to race conditions when several members in the group wanted to modify their own prop-
erties.

Therefore, the PropertyManager can be used to specify the initial properties of the group
members, and the factories (interface GenericFactory) receive the properties of a member
when this is created.

i nt er f ace Gener i c Fact or y {
 Obj ect cr eat e_obj ect (i n TypeI d t y pe_i d,
 i n Cr i t er i a t he_cr i t er i a,
 out Fact or yCr eat i onI d i d) ;
 voi d del et e_obj ect (i n Fac t or y Cr eat i onI d i d) ;
} ;

In our proposal, these properties are included in the Criteria parameter in an entry named
FT::FT_MEMBER_PROPERTIES: a member only receives its own properties, the other's are
received during the state transfer. Properties are received and can be dynamically changed
through the interface PropertyHandler, to be implemented by the object members.

i nt er f ace Pr oper t yHandl er {
 Pr oper t i es get _pr oper t i es (i n Locat i on l oc at i on) ;
 voi d s et _pr oper t i es (i n Locat i on l ocat i on ,
 i n Pr oper t i es pr oper t i es) ;
} ;

To change the properties, a member must invoke set_properties on the object group reference,
specifying its own location and its new properties.

3.4 Group composition

As stated in the fault tolerance specification, the active replication requires the use of a multi-
cast group communication system providing reliable totally-ordered message delivery and
group membership services in a model of virtual synchrony. Under this model, group members
usually receive events related to the group membership, like the view of the group, with the

9

ordered list of members. This list can be obtained under the current specification with the
method locations_of_members in the ObjectGroupManager interface.

Nevertheless, a member cannot be considered as belonging to a group until it has received the
state. During the state transfer, it is needed to block any action on the coordinator and joining
members, as these actions could modify the transferring state, and both members would likely
finish in inconsistent states. When the transfer finishes, the blocked messages can be unqueued
and processed. Only the coordinator and the joining member are blocked; they can be seen as
slower members, not performing any action until the state is transferred.

To be able to know at each moment the real composition of the group, that is, the list of state
members, we include an additional method in the StateHandler interface:

t ypedef s equence<St at eHandl er > St at eVi ew;
i nt er f ace St at eHandl er {
 . . .
 v oi d s t at e_vi ew (i n St at eVi ew s) ;
} ;

4 Use cases

4.1 StateHandler interface

1. The application creates a new member in a group with the property UseBasicStateTrans-
fer set to false. An existing state member is chosen as coordinator.

2. The method sync_transfer is invoked on the interface StateHandler implemented by the
joining member. A nil reference is passed as parameter, besides the location of the coordi-
nator.

3. The coordinator’s method start_transfer is called with the location of the joining member
and the phase returned after the call to sync_transfer. The coordinator must return a phase
object.

4. This phase object is passed back to the coordinator on the next call, to the method
get_state. It must supply the first chunk and a phase object that will be transferred to the
joining member through the method set_state.

5. While the phase returned by the coordinator does not flag the end of the transfer, the pre-
vious step is repeated.

6. If any of the members involved in the transfer fails, the other member learns about it
through the FaultNotifier. If the coordinator is the member failing, a transfer is restarted
by choosing a new coordinator. The method sync_transfer is invoked again on the joining
member, but this time it receives the last PhaseCoordination object received, instead of a
nil reference. It can then choose whether the whole state must be transferred again, or just
continue the interrupted transfer, by modifying that object.

10

7. When the transfer finishes, every member in the group receives a new state view with a
call to the method state_view.

4.2 Coordinator selected by the application

1. A member is added to a group that has defined the property CoordinatorElection-
StyleValue as COORD_ELECTION_APP_CTRL.

2. If the fault tolerance service uses pull transfer, the method get_coordinator is invoked on
the joining member. Under push transfer, the method is invoked on every state member. In
both cases, the member must choose the coordinator between one of the members passed to
the method as parameter.

4.3 Coordinator selected by the infrastructure

1. A member is added to a group that has defined the property CoordinatorElection-
StyleValue as COORD_ELECTION_INF_CTRL.

2. If the group does not use member properties, any state member can be chosen as coordina-
tor.

3. If the group is using member properties, state members are accessed to obtain the proper-
ties of the current members (method get_properties under the PropertyHandler interface).
If property FT::COORDINATOR_WEIGHT is defined, the infrastructure selects as coor-
dinator the member with lower relation scheduled_transfers / weight. If the property is not
defined, any state member can be chosen as coordinator.

4.4 Use of properties under an infrastructure-controlled membership style

1. The application invokes the create_object method of the GenericFactory implemented by
the ReplicationManager, supplying the type_id and properties through the Criteria pa-
rameter.

2. The ReplicationManager obtains the fault tolerance properties for the object group from
the PropertyManager of the type_id specified. These properties can be overridden by oth-
ers specified in the Criteria parameter under the entry called FT::FT_PROPERTIES.

3. The ReplicationManager decides the locations at which to create the members of the ob-
ject group.

4. For each location, if the group properties define UseMemberProperties as true, an entry
called FT::FT_MEMBER_PROPERTIES is searched, and inside this entry, the properties
for the specific location are obtained.

5. The member properties, when defined, are passed to the object being created with the cre-
ate_object method of the appropriated factory, under the Criteria parameter.

11

6. Once the object is created, it receives the properties of the other group members through
successive calls to the method set_properties on the PropertyHandler interface, once for
each existing state member.

4.5 Use of properties under an application-controlled membership style

1. Members created directly by the application using the local factory, receive their proper-
ties through an entry called FT::FT_MEMBER_PROPERTIES in the Criteria parameter.

2. Members created by the create_member method in the ObjectGroupManager interface
implemented by the ReplicationManager receive their properties in the same way, as that
method defines as well a Criteria parameter (the local factory is called indirectly).

3. Once the object is created, it receives the properties of the other group members through
successive calls to the method set_properties on the PropertyHandler interface, once for
each existing state member.

5 Conclusions

This proposal introduces a flexible state transfer scheme complementing the basic one defined
in the current fault tolerance CORBA specification. The domain of this proposal is composed
by the active groups using an application-controlled consistency style, where the logging and
recovery mechanisms defined in the specification are not suitable enough.

The basic idea supporting the scheme flexibility is the splitting of the state to be transferred in
several chunks. The application can also decide how to handle interrupted transfers, or which
state member is more appropriate to coordinate a specific state transfer. It is also possible to
define member properties, as a feature separated from the concept of group's state.

These features are specified with a high adaptation to the fault tolerance specification, and
there is no need for additional changes to the CORBA specification. Most of these features are
configurable through the use of object group properties, and only three new interfaces are de-
fined: StateHandler, to handle state transfers, PropertyHandler, to allow the dynamic change
of properties, and CoordinatorElector, to allow the selection of transfer coordinators by the
application.

Refer ences

[OMG99] Fault Tolerant CORBA, Joint Revised Submission, OMG TC Document orbos/00-
01-19, December 20, 1999.

[Birman87] K. Birman, and T. Joseph, “ Exploting Virtual Synchrony in Distributed Systems” ,
Proceedings of the Eleventh Symposium on Operating Systems Principles, Austin, Novem-
ber 1987.

12

[Schlichting93] R. Schlichting, S. Mishra, and L. Peterson “A Communication Substrate for
Fault-tolerant Distributed Programs”, Distributed System Engineering, vol. 1, pp. 87-103,
December 1993

[Parrington95] G.D. Parrington, S.K. Shrivastava, S.M. Wheater and M.C. Little, “ The De-
sign and Implementation of Arjuna”, USENIX Computing Systems Journal, Vol 8, No 3,
1995

[Maffeis97] S. Maffeis and D. C. Schmidt. “ Constructing Reliable Distributed Communica-
tion Systems with CORBA”, IEEE Communications Magazine 14(2), February 1997.

[Malloth96] “Conception and Implementation of a Toolkit for Building Fault-Tolerant Dis-
tributed Applications in Large Scale Networks” PhD Thesis No. 1557, Swiss Federal Insti-
tute of Technology of Lausanne (Switzerland) September 1996.

[Hayden98] M. Hayden, “ The Ensemble System Cornell University” Technical Report, TR98-
1662, January 1998

[Peña99] L.M. Peña, J. Pavon, “Sensei: Transferencia de Estado en Grupos de Objetos Dis-
tribuidos”, Computacion y Sistemas Vol.2, No 4 pp.191-201, April-June 1999.

