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Abstract. Current Fault Tolerant CORBA specification by OMG addresses fault 
detection, notification, analysis and recovery for object replicas in a distributed 
environment. This paper addresses the open issue of state transfer in groups of 
active replicas under an application-controlled consistency style, which must be 
flexible to cope with different application requirements, such as transfer of large 
states, non-blocking during state transfer, and coordinator election. 

1   Introduction 

The Object Management Group (OMG) has just approved the standard for Fault Tolerant 
CORBA [OMG99]. This deals with replication of objects (instead of servers) in a CORBA 
environment. The standard tries to support a wide range of requirements, such as passive and 
active replication modes, control of the creation and the consistency of the replicas by the ap-
plication or the fault tolerance infrastructure, automatic or application-driven checkpointing, 
logging and recovery from faults, while keeping minimum impact in the ORB.  

This paper addresses an open issue in the specification: the state transfer in groups of active 
replicas under an application-controlled consistency style, which must be flexible to cope with 
different application requirements, such as transfer of state in one step or in several (for large 
states), blocking or non-blocking of server object groups during state transfer, and election of 
coordinator for the state transfer. 

2   Fault Tolerant CORBA 

The key component of the Fault Tolerant CORBA architecture for management of the object 
group is the ReplicationManager, which should be also replicated to be fault tolerant. The 
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ReplicationManager interface inherits three interfaces: PropertyManager, GenericFactory, 
and ObjectGroupManager. 

The PropertyManager interface allows the user to define fault tolerance properties of object 
groups, that basically determine the responsibilities of the infrastructure. The most relevant 
properties are ReplicationStyle, MembershipStyle, and ConsistencyStyle. 

The ReplicationStyle sets how the state is maintained on the replicas; it can be stateless, cold 
passive, warm passive, active and active with voting (this last one is not supported in the cur-
rent specification). Passive replications are based on one single member, the primary member, 
processing every method invocation to the group, which contains as well backup members. In 
the case of warm replication, backup members are updated periodically with the state of the 
primary replica; in the case of cold replication, this update is only done when needed for recov-
ery. Under active replication, every replica processes each method invocation, and duplicated 
requests or replies are suppressed. This style requires a group working under the virtual syn-
chrony model [Birman87]. 

The MembershipStyle determines whether group membership is under the responsibility of the 
application (application-controlled) or the infrastructure (infrastructure-controlled). In the 
latter case, the ReplicationManager invokes the required factories to create the members 
needed to satisfy the group properties, like the initial or the minimum number of replicas. In 
the first case, the ReplicationManager provides the operations to do manually the insertion 
and extraction of members in groups, to define the primary member and the locations of each 
group member.   

The ConsistencyStyle can also be application-controlled or infrastructure-controlled. When 
controlled by the application, this must maintain its own consistency at each moment: after 
each group invocation or when a new replica is added, which must therefore receive the appro-
priate group’s state. Alternatively, when controlled by the Fault Tolerance infrastructure, the 
application group objects must just implement a basic interface, Checkpointable, which pro-
vides simple setState and getState methods.  

i nt er f ace Checkpoi nt abl e {  
    St at e get _st at e ( ) ;  
    v oi d set _st at e ( i n St at e s) ;  
} ;  

i nt er f ace Updat eabl e :  Checkpoi nt abl e {  
    St at e get _updat e ( ) ;  
    v oi d set _updat e ( i n St at e s) ;  
} ;  

Optionally, objects can implement a specialized interface, Updateable, which also defines the 
operations get_update, set_update, to store and retrieve the state incrementally. The infra-
structure keeps the checkpointing, logging, activation and recovery mechanisms required to 
maintain a strong consistency and to install the group’s state on any new replica. This consis-
tency means, under the passive replication, that after a state transfer to a backup member, this 
is consistent with the primary member (or the previous primary member, if cold replication). 
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Under active replication, the strong consistency requires that after each method invocation, 
every replica has the same state. If the replication is not stateless, the behaviour of each mem-
ber must be deterministic and each member must start in the same state.  

This specification means that when the Fault Tolerance infrastructure must keep strong consis-
tency, replicas are periodically requested for their state. The infrastructure stores the messages 
processed by every replica and requests the state to the replicas according to the Check-
pointInterval property (defined in units of 100 nanoseconds). When a new replica is included 
in the group, the state can be built from the last stored state and the log of messages that have 
been processed after the state was retrieved. 

Cactus [Schlichting93] works under a similar scheme. Each replica must store periodically 
checkpoints of its state, and keep a trace of the messages processed from the last checkpoint. If 
a replica becomes active, it can build its state from those checkpoints. This technique is fast 
when replicas are down during short periods but it requires every replica to spend some proc-
essing time periodically, not only in case of a state transfer. 

Most of the existing group communication systems with support for active replication perform 
the state transfer from another active replica. Arjuna [Parrington95] does automatically a state 
transfer when a new member joins a group. The state transfer is done in one step, blocking the 
whole system, and group members must just implement two state operations: save_state, re-
store_state. Electra [Maffeis97] uses the same approach, but with a more flexible scheme, 
allowing transfers in several pieces and still using a simple interface: get_state, save_state. In 
Phoenix [Malloth96], only the members involved in the transfer are blocked, but the transfer 
must be done in just one step, with a similar interface: get_state, put_state. JavaGroups does 
not invoke automatically the transfer; this is an operation to be called by the interested mem-
ber, who can request the state from every group member or just from one, generally the oldest 
one. The member sending its state must first make a copy of its state, and while this copy is 
performed, the member is blocked. When the state is requested, the member just sends this 
temporary copy. It is a transfer in one step, and requires total ordering on the messages; the 
interface is slightly more complex, to do the state copy: SaveState, GetState, SetState. 

Maestro, a C++  interface for Ensemble [Hayden98] allows several approaches to the state 
transfer. A group can specify if it needs a transfer and, if so, it will be invoked automatically. 
Messages can be classified as safe or unsafe; in the former case, they can be sent during the 
transfer, otherwise they are blocked, but this means that the relative order between messages is 
lost. Transfers can be done in several steps, as opposed to the latest versions of Maestro, 
which include a new state transfer mechanism in one step. State members automatically send 
their state, being possible to identify the current one. Therefore, any member can update its 
state using the newest state. The protocol is simple, and has an acceptable performance when 
the state is small, groups have few members, and changes in the group membership are un-
usual. 

This paper specifies a state transfer interface for those active CORBA groups under an appli-
cation-controlled ConsistencyStyle.  This interface must allow flexible transfers to be adapted 
to any generic group. The following section includes the requirements for the state transfer, 
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with the adaptations needed to the fault tolerance IDL specification, and the section after 
shows several use cases for a better understanding of this proposal. 

3   State tr ansfer  requirements 

On an active group, two cases require a state transfer. First, when one or more members join 
the group and need to receive the state from the old members. Second, when the group has 
been partitioned due to network problems, with the subgroups progressing independently, and 
the group is re-merged, making a state transfer necessary between the subgroups. This second 
possibility is not afforded in this paper for two reasons: its complexity and the extra require-
ments needed to keep the consistency (Fault Tolerance CORBA specification does not address 
object group partitioning either). 

Although every member in the group has at any moment a specific state, only those members 
sharing a common, initialised state will be considered as state members. Those members 
whose state is not coherent with this global state are considered as stateless members. 

The simplest state transfer from an active group to one or more joining members consists of 
the state being sent in one multicast message from one state member. The joining members 
receive it and the other active members see the message as the trigger to consider that the 
transfer has finished. The selection of the member that sends the state can be based on the 
properties of the view synchrony model as every group member receives the same ordered list 
of members, called a view. According to this, one possibility is to select the state member with 
the lowest range in the view. This member is the coordinator of the state transfer. 

Several circumstances can make this scenario more complex. If the state to transfer is large 
enough, it should be sent in more than one message, in order to avoid blocking the coordinator 
while it builds the message with the state (as no updates can be performed on that member in 
the meantime). The possibility to send the state in several steps implies as well that a transfer 
can be cancelled due to a failure of the coordinator; in this case, a transfer synchronization is 
required. The interface should anyway stay simple if the transfer is done in one step. 

Other point that can affect the performance of the group is the election of the transfer coordi-
nator. An application can select one member to do every transfer. This member will normally 
perform worse that the other members, but frees them of doing this task. At the other extreme, 
a different member can be selected each time a transfer is required, to achieve load balance. 
Additionally, because a member can be selected to do several transfers, these transfers can be 
done concurrently or sequentially. 

Finally, group blocking must be taken into account while the transfer is performed (i.e., the 
group does not accept method invocations while the state transfer is performed). If the coordi-
nator can update its state during the state transfer, a re-synchronization will be needed. A sim-
ple way to avoid this additional complexity is blocking the group during the transfers, but the 
performance can degrade dramatically if state transfers are required very often.  
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3.1   Transfer  synchronization 

The basic functionality to keep consistency of state is covered by the existing Checkpointable 
interface, enough to get and set the state. However, if the state is transferred in several chunks, 
some synchronization is needed between the stateless member and the coordinator to identify 
the chunk being transferred; this synchronization is also needed to restart a previously can-
celled transfer. Although the state chunks can include the required synchronization, to define a 
separate object for that purpose allows for a better and clearer design. This object is called 
phase coordination, and it is defined by the application; from the transfer system’s point of 
view, this phase must just flag when the transfer has finished. An example of a phase object is 
one containing the number of chunks to transfer and the next chunk to be transferred, flagging 
the end of the state transfer when both numbers are equal. 

abst r act  val uet ype PhaseCoor di nat i on {  
    bool ean i sTr ansf er Fi ni shed ( ) ;  
} ;  

The definition of this object makes use of the Objects by Value functionality. If an interface 
would be used, the checking of the end of the transfer would need a remote call. If a structure 
were used, there would be no possibility to extend the type to include the specific application 
behaviour, as IDL structures do not allow inheritance. 

When a state member is called to obtain its state, it must return the PhaseCoordination asso-
ciated to that state, which is transferred to the joining member. As state transfers are now done 
in several steps, if the state member fails, a new transfer should be started from the beginning. 
In order to allow the continuation of a cancelled transfer, two new methods are added. 
sync_transfer is called on the stateless member to specify the next PhaseCoordination ex-
pected; this phase is passed to the coordinator as a parameter to a method start_transfer  
These methods are specified in the interface StateHandler, which has no connection with the 
Checkpointable interface. To specify when a group is using the basic functionality or the ex-
tended one proposed here, we define a group property UseBasicStateTransfer: 

t ypedef  bool ean UseBasi cSt at eTr ansf er ;  
i nt er f ace St at eHandl er  {  
 voi d s t ar t _t r ans f er  ( i n Locat i on j oi ni ng_member ,   
                      i nout  PhaseCoor di nat i on phase) ;  
 voi d sync_t r ansf er   ( i n Locat i on coor di nat or ,  
                      i nout  PhaseCoor di nat i on phase) ;  
 St at e get _st at e ( i nout  PhaseCoor di nat i on phase) ;   
 voi d set _st at e ( i n St at e s,   
                 i n PhaseCoor di nat i on phase) ;  
} ;  

• start_transfer: call to the state member when a transfer is going to start, to allow any pre-
processing that the application may need to perform, and to synchronize the transfer with 
the joining member. It returns a phase which will be used in the next call to get_state. 
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• sync_transfer: call to the stateless member when a transfer is going to start. If there was 
already a transfer and the previous coordinator failed, this method is called with the last 
received phase (a nil reference if it is the first transfer), and must return the next expected 
phase.  

• get_state: the state will be requested while the phase returned does not flag the end of the 
transfer. 

• set_state: called on the stateless member. 

The previous interface is only valid when the transfer includes one coordinator and only one 
new member receiving the state. The reason is that the probability of having several members 
joining the group at the same time, and therefore targeting the same transfer, are usually very 
low. The coordinator could still be programmed to do several unrelated transfers at same time, 
but the performance increase obtained could not be appreciable, as the application must sup-
port several threads getting the state at the same time, and solve the potential synchronization 
problems. 

3.2   Coordinator  election 

There are different strategies to select the state member that will be responsible for controlling 
a state transfer: either the joining member chooses its coordinator member (pull transfer), or 
the state members decide which of them will make the transfer (push transfer). The pull proto-
col performs better [Peña99] when hardware broadcasts are supported, otherwise the push 
protocol is preferred1. 

The election of the coordinator in both cases can be done automatically by the state transfer 
infrastructure, or driven by the application. In the first case, the simplest way is to let any 
member be the coordinator. Another possibility is to associate weights to each member, allow-
ing a load balance between the state members or to leave this task to one or several predefined 
members, those with higher weights.  

If the application has the responsibility to select the coordinator, it must know the list of state 
members. The current Fault Tolerant CORBA specification defines an operation to retrieve the 
members belonging to one group (location_of_members), but this operation just associates 
statically a string (Location is defined as CosNaming::Name) to each member. Each member 
should therefore associate that location to a responsibility degree in the transfer task, and the 
association would be static, making it difficult to include new members in the group.  

Our proposal introduces a new concept: properties associated to each member. If the applica-
tion is going to choose the coordinator, it is presented with a list of the state members, along 
with their associated properties. If the election is automatic, each member can have a weight 

                                                   
1 For this reason, we consider the service to be predefined as push or pull, a group cannot 

specify its preferred protocol. 



       

 

7

associated, and that weight is used by the infrastructure to choose the coordinator. This weight 
behaves as a predefined property with name FT::COORDINATOR_WEIGHT. 

When the coordinator is chosen by the application, its object members must implement the 
interface CoordinatorElector, which defines one method called get_coordinator: the locations 
of the state members are presented, and one location must be returned deterministically2.  

i nt er f ace Coor di nat or El ec t or  {  
  Loc at i on get _coor di nat or  ( i n Locat i ons l ocat i ons) ;  
} ;  

3.3   M ember properties 

The state of a group can be seen as the state of one member that is the only member in the 
group. However, properties are associated to each specific member, and should have no visibil-
ity outside the group. In other words, properties are not part of that state and no output from 
the group should be affected by those properties. Only group domain operations should be 
affected, like the choice of the member that must perform some specific task. Examples of 
such properties are the location of each member, or their weight or responsibility to perform 
specific tasks. 

Other difference between the global state and the member properties is the required transfer. 
When a member joins a group, this group must transfer its state. However, the properties must 
be transmitted in both ways: a new member is considered to have properties but not an initial 
state. 

The fault tolerance specification already defines a Property structure, perfectly valid for our 
purposes. The PropertyManager interface provides methods to set properties statically as 
defaults for any group created by that manager, or dynamically for a specific group. 

t ypedef  CosNami ng: : Name Name;  
t ypedef  any  Val ue;  
s t r uc t  Pr oper t y  {  
 Name nam;  
 Val ue v al ;  
} ;  
t ypedef  s equence <Pr oper t y> Pr oper t i es;  

We define two additional properties, for the use of member properties and the coordinator 
election: UseMemberProperties, CoordinatorElectionStyle. 

t ypedef  bool ean UseMember Pr oper t i es;  
t ypedef  l ong Coor di nat or El ect i onSt y l eVal ue;  
c onst  Coor di nat or El ec t i onSt y l eVal ue 
                        COORD_ELECTI ON_I NF_CTRL = 0;  

                                                   
2 On a pull protocol, this election doesn't have to be deterministic, as only one member, the one 

requesting the state, must select the coordinator. 
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c onst  Coor di nat or El ec t i onSt y l eVal ue 
                        COORD_ELECTI ON_APP_CTRL = 1;  

The PropertyManager interface granularity allows the specification of properties for groups, 
not for the members themselves. However, it is possible and effective to specify a new prede-
fined property that associates for each location a set of properties. If the group uses an infra-
structure-controlled membership, the properties will be transferred to the factories creating the 
individual group members; otherwise, the application itself must specify the properties when 
the objects are created. 

The PropertyManager interface includes a method to modify dynamically the properties of a 
group, but it would be impractical to modify the properties of a member through this method 
because the whole group's properties must be specified. Additionally, this operation would be 
prone to race conditions when several members in the group wanted to modify their own prop-
erties. 

Therefore, the PropertyManager can be used to specify the initial properties of the group 
members, and the factories (interface GenericFactory) receive the properties of a member 
when this is created.  

i nt er f ace Gener i c Fact or y {  
   Obj ect  cr eat e_obj ect  ( i n TypeI d t y pe_i d,   
                         i n Cr i t er i a t he_cr i t er i a,  
                         out  Fact or yCr eat i onI d i d) ;  
   voi d del et e_obj ect  ( i n Fac t or y Cr eat i onI d i d) ;  
} ;  

In our proposal, these properties are included in the Criteria parameter in an entry named 
FT::FT_MEMBER_PROPERTIES: a member only receives its own properties, the other's are 
received during the state transfer. Properties are received and can be dynamically changed 
through the interface PropertyHandler, to be implemented by the object members. 

i nt er f ace Pr oper t yHandl er  {  
   Pr oper t i es  get _pr oper t i es ( i n Locat i on l oc at i on) ;  
   voi d s et _pr oper t i es ( i n Locat i on l ocat i on ,  
                        i n Pr oper t i es  pr oper t i es) ;  
} ;  

To change the properties, a member must invoke set_properties on the object group reference, 
specifying its own location and its new properties. 

3.4   Group composition 

As stated in the fault tolerance specification, the active replication requires the use of a multi-
cast group communication system providing reliable totally-ordered message delivery and 
group membership services in a model of virtual synchrony. Under this model, group members 
usually receive events related to the group membership, like the view of the group, with the 



       

 

9

ordered list of members. This list can be obtained under the current specification with the 
method locations_of_members in the ObjectGroupManager interface. 

Nevertheless, a member cannot be considered as belonging to a group until it has received the 
state. During the state transfer, it is needed to block any action on the coordinator and joining 
members, as these actions could modify the transferring state, and both members would likely 
finish in inconsistent states. When the transfer finishes, the blocked messages can be unqueued 
and processed. Only the coordinator and the joining member are blocked; they can be seen as 
slower members, not performing any action until the state is transferred. 

To be able to know at each moment the real composition of the group, that is, the list of state 
members, we include an additional method in the StateHandler interface: 

t ypedef  s equence<St at eHandl er > St at eVi ew;  
i nt er f ace St at eHandl er  {  
    . . .  
    v oi d s t at e_vi ew ( i n St at eVi ew s) ;  
} ;  

4   Use cases 

4.1 StateHandler interface 

1. The application creates a new member in a group with the property UseBasicStateTrans-
fer set to false. An existing state member is chosen as coordinator. 

2. The method sync_transfer is invoked on the interface StateHandler implemented by the 
joining member. A nil reference is passed as parameter, besides the location of the coordi-
nator.  

3. The coordinator’s method start_transfer is called with the location of the joining member 
and the phase returned after the call to sync_transfer. The coordinator must return a phase 
object. 

4. This phase object is passed back to the coordinator on the next call, to the method 
get_state. It must supply the first chunk and a phase object that will be transferred to the 
joining member through the method set_state. 

5. While the phase returned by the coordinator does not flag the end of the transfer, the pre-
vious step is repeated. 

6. If any of the members involved in the transfer fails, the other member learns about it 
through the FaultNotifier. If the coordinator is the member failing, a transfer is restarted 
by choosing a new coordinator. The method sync_transfer is invoked again on the joining 
member, but this time it receives the last PhaseCoordination object received, instead of a 
nil reference. It can then choose whether the whole state must be transferred again, or just 
continue the interrupted transfer, by modifying that object. 
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7. When the transfer finishes, every member in the group receives a new state view with a 
call to the method state_view. 

4.2 Coordinator selected by the application 

1. A member is added to a group that has defined the property CoordinatorElection-
StyleValue as COORD_ELECTION_APP_CTRL. 

2. If the fault tolerance service uses pull transfer, the method get_coordinator is invoked on 
the joining member. Under push transfer, the method is invoked on every state member. In 
both cases, the member must choose the coordinator between one of the members passed to 
the method as parameter. 

4.3 Coordinator selected by the infrastructure 

1. A member is added to a group that has defined the property CoordinatorElection-
StyleValue as COORD_ELECTION_INF_CTRL. 

2. If the group does not use member properties, any state member can be chosen as coordina-
tor. 

3. If the group is using member properties, state members are accessed to obtain the proper-
ties of the current members (method get_properties under the PropertyHandler interface). 
If property FT::COORDINATOR_WEIGHT is defined, the infrastructure selects as coor-
dinator the member with lower relation scheduled_transfers / weight. If the property is not 
defined, any state member can be chosen as coordinator. 

4.4   Use of properties under an infrastructure-controlled membership style 

1. The application invokes the create_object method of the GenericFactory implemented by 
the ReplicationManager, supplying the type_id and properties through the Criteria pa-
rameter. 

2. The ReplicationManager obtains the fault tolerance properties for the object group from 
the PropertyManager of the type_id specified. These properties can be overridden by oth-
ers specified in the Criteria parameter under the entry called FT::FT_PROPERTIES. 

3. The ReplicationManager decides the locations at which to create the members of the ob-
ject group. 

4. For each location, if the group properties define UseMemberProperties as true, an entry 
called FT::FT_MEMBER_PROPERTIES is searched, and inside this entry, the properties 
for the specific location are obtained. 

5. The member properties, when defined, are passed to the object being created with the cre-
ate_object method of the appropriated factory, under the Criteria parameter. 
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6. Once the object is created, it receives the properties of the other group members through 
successive calls to the method set_properties on the PropertyHandler interface, once for 
each existing state member. 

4.5   Use of properties under an application-controlled membership style 

1. Members created directly by the application using the local factory, receive their proper-
ties through an entry called FT::FT_MEMBER_PROPERTIES in the Criteria parameter. 

2. Members created by the create_member method in the ObjectGroupManager interface 
implemented by the ReplicationManager receive their properties in the same way, as that 
method defines as well a Criteria parameter (the local factory is called indirectly). 

3. Once the object is created, it receives the properties of the other group members through 
successive calls to the method set_properties on the PropertyHandler interface, once for 
each existing state member. 

5   Conclusions 

This proposal introduces a flexible state transfer scheme complementing the basic one defined 
in the current fault tolerance CORBA specification. The domain of this proposal is composed 
by the active groups using an application-controlled consistency style, where the logging and 
recovery mechanisms defined in the specification are not suitable enough.  

The basic idea supporting the scheme flexibility is the splitting of the state to be transferred in 
several chunks. The application can also decide how to handle interrupted transfers, or which 
state member is more appropriate to coordinate a specific state transfer. It is also possible to 
define member properties, as a feature separated from the concept of group's state. 

These features are specified with a high adaptation to the fault tolerance specification, and 
there is no need for additional changes to the CORBA specification. Most of these features are 
configurable through the use of object group properties, and only three new interfaces are de-
fined: StateHandler, to handle state transfers, PropertyHandler, to allow the dynamic change 
of properties, and CoordinatorElector, to allow the selection of transfer coordinators by the 
application. 
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